Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agata L. Gava is active.

Publication


Featured researches published by Agata L. Gava.


Journal of Biomedical Science | 2012

Cardiac and vascular phenotypes in the apolipoprotein E-deficient mouse

Elisardo C Vasquez; Veronica A Peotta; Agata L. Gava; Thiago M.C. Pereira; Silvana S. Meyrelles

Cardiovascular death is frequently associated with atherosclerosis, a chronic multifactorial disease and a leading cause of death worldwide. Genetically engineered mouse models have proven useful for the study of the mechanisms underlying cardiovascular diseases. The apolipoprotein E-deficient mouse has been the most widely used animal model of atherosclerosis because it rapidly develops severe hypercholesterolemia and spontaneous atherosclerotic lesions similar to those observed in humans. In this review, we provide an overview of the cardiac and vascular phenotypes and discuss the interplay among nitric oxide, reactive oxygen species, aging and diet in the impairment of cardiovascular function in this mouse model.


Journal of Translational Medicine | 2013

Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

Camille M Balarini; Marcos André Soares Leal; Isabele Beserra Santos Gomes; Thiago M.C. Pereira; Agata L. Gava; Silvana S. Meyrelles; Elisardo C. Vasquez

BackgroundAtherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS) and nitric oxide (NO). Sildenafil, a selective phosphodiesterase-5 (PDE5) inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/−) mice.MethodsApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage) were compared to the untreated apoE−/− and the wild-type (WT) mice.Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh) in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor) or apocynin (NADPH oxidase inhibitor). In addition, the atherosclerotic lesions were quantified and superoxide production was assessed.ResultsSildenafil restored the vasodilator response to acetylcholine (ACh) in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta.ConclusionThis is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous hypercholesterolemia. These data indicate that the main mechanism of the beneficial effect of sildenafil on the endothelial function appears to involve an enhancement of the NO pathway along with a reduction in oxidative stress.


Toxicology Letters | 2015

Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas

Bruno D. Bertuloso; Priscila L. Podratz; Eduardo Merlo; Julia F.P. de Araújo; Leandro Ceotto Freitas Lima; Emilio C. de Miguel; Letícia Nogueira da Gama de Souza; Agata L. Gava; Miriane de Oliveira; Leandro Miranda-Alves; Maria Tereza Weitzel Dias Carneiro; Célia Nogueira; Jones Bernardes Graceli

Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood. The toxicity of TBT in the white adipose tissue (WAT), liver and pancreas of female rats were assessed. Animals were divided into control and TBT (0.1 μg/kg/day) groups. TBT induced an increase in the body weight of the rats by the 15th day of oral exposure. The weight gain was associated with high parametrial (PR) and retroperitoneal (RP) WAT weights. TBT-treatment increased the adiposity, inflammation and expression of ERα and PPARγ proteins in both RP and PR WAT. In 3T3-L1 cells, estrogen treatment reduced lipid droplets accumulation, however increased the ERα protein expression. In contrast, TBT-treatment increased the lipid accumulation and reduced the ERα expression. WAT metabolic changes led to hepatic inflammation, lipid accumulation, increase of PPARγ and reduction of ERα protein expression. Accordingly, there were increases in the glucose tolerance and insulin sensitivity tests with increases in the number of pancreatic islets and insulin levels. These findings suggest that TBT leads to adiposity in WAT specifically, impairing the metabolic functions of the liver and pancreas.


Canadian Journal of Physiology and Pharmacology | 2007

Evaluation of baroreflex control of heart rate in renovascular hypertensive mice

Veronica A. Peotta; Agata L. Gava; Elisardo C. Vasquez; Silvana S.MeyrellesS.S. Meyrelles

The objective of the present study was to evaluate the baroreflex and the autonomic control of heart rate (HR) in renovascular hypertensive mice. Experiments were carried out in conscious C57BL/6 (n = 16) mice 28 days after a 2-kidney 1-clip procedure (2K1C mice) or a sham operation (sham mice). Baroreflex sensitivity was evaluated by measuring changes in heart rate (HR) in response to increases or decreases in mean arterial pressure (MAP) induced by phenylephrine or sodium nitroprusside. Cardiac autonomic tone was determined by use of atropine and atenolol. Basal HR and MAP were significantly higher in 2K1C mice than in sham mice. The reflex tachycardia induced by decreases in MAP was greatly attenuated in 2K1C mice compared with sham mice. Consequently, the baroreflex sensitivity was greatly decreased (2.2 +/- 0.4 vs. 4.4 +/- 0.3 beats x min(-1) x mmHg(-1)) in hypertensive mice compared with sham mice. The reflex bradycardia induced by increases in MAP and the baroreflex sensitivity were similar in both groups. Evaluation of autonomic control of HR showed an increased sympathetic tone and a tendency to a decreased vagal tone in 2K1C mice compared with that in sham mice. 2K1C hypertension in mice is accompanied by resting tachycardia, increased predominance of the cardiac sympathetic tone over the cardiac vagal tone, and impairment of baroreflex sensitivity.


Lipids in Health and Disease | 2010

Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice

Maine S Cola; Agata L. Gava; Silvana S. Meyrelles; Elisardo C. Vasquez

BackgroundThe effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE) mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57) and hypercholesterolemic (ApoE) female mice in both normal and ovariectomized conditions.MethodsTwenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10-9 to 2 × 10-3 mol/L), acetylcholine (ACh) and sodium nitroprusside (SNP) (10-10 to 10-3 mol/L) were evaluated in the isolated mesenteric arteriolar bed through dose-response curves.ResultsACh-induced relaxation was significantly reduced (P < 0.05) in ApoE compared with C57 animals, as indicated by both the maximal response (37 ± 4% vs. 72 ± 1%) and the LogEC50 (-5.67 ± 0.18 vs. -6.23 ± 0.09 mol/L). Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 ± 4%) but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 ± 5%). SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice.ConclusionThese data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient) female mice compared with normal (C57) female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.


Brazilian Journal of Medical and Biological Research | 2011

Gender-dependent effects of aging on the kidney

Agata L. Gava; Flavia Ps Freitas; Silvana S. Meyrelles; Ian Victor Silva; Jones Bernardes Graceli

It is well known that the kidney plays an important role in the development of cardiovascular diseases such as hypertension. The normal aging process leads to changes in kidney morphology, hemodynamics and function, which increase the incidence of cardiovascular events in the elderly population. These disturbances are influenced by several factors, including gender. In general, females are protected by the effects of estrogens on the cardiorenal system. Several studies have demonstrated the beneficial effects of estrogens on renal function in the elderly; however, the relationships between androgens and kidney health during ones lifetime are not well understood. Sex steroids have many complex actions, and the decline in their levels during aging clearly influences kidney function, decreases the renal reserve and facilitates the development of cardiovascular disorders. Therefore, in this review, we discuss the cellular, biochemical, and molecular mechanisms by which sex hormones may influence renal function during the aging process.


International Journal of Hypertension | 2012

Cardiac-Autonomic Imbalance and Baroreflex Dysfunction in the Renovascular Angiotensin-Dependent Hypertensive Mouse

Bianca P. Campagnaro; Agata L. Gava; Silvana S. Meyrelles; Elisardo C. Vasquez

Mouse models provide powerful tools for studying the mechanisms underlying the dysfunction of the autonomic reflex control of cardiovascular function and those involved in cardiovascular diseases. The established murine model of two-kidney, one-clip (2K1C) angiotensin II-dependent hypertension represents a useful tool for studying the neural control of cardiovascular function. In this paper, we discuss the main contributions from our laboratory and others regarding cardiac-autonomic imbalance and baroreflex dysfunction. We show recent data from the angiotensin-dependent hypertensive mouse demonstrating DNA damage and oxidative stress using the comet assay and flow cytometry, respectively. Finally, we highlight the relationships between angiotensin and peripheral and central nervous system areas of cardiovascular control and oxidative stress in the 2K1C hypertensive mouse.


Current Pharmaceutical Biotechnology | 2015

Mechanisms of Enhanced Vasoconstriction in the Mouse Model of Atherosclerosis: the Beneficial Effects of Sildenafil

Marcos André Soares Leal; Camille M. Balarini; Ananda T. Dias; Marcella L. Porto; Agata L. Gava; Thiago M.C. Pereira; Silvana S. Meyrelles; Elisardo C. Vasquez

Sildenafil ameliorates aortic relaxations in apolipoprotein E knockout (apoE) mice. Now, we tested the hypothesis that endothelial dysfunction (ED) in this model is characterized by contractile hyperresponsiveness to phenylephrine (PE) and that this abnormality may be repaired using sildenafil. The aortic rings were evaluated in apoE mice treated with sildenafil (apoE-sil, 40 mg/kg/day) and compared with apoE and wild-type (WT) mice administered with vehicle (veh). The apoE-veh mice exhibited an imbalance of nitric oxide and reactive oxygen species (NO/ROS) levels and an increased maximum response (Rmax, 20%) and sensitivity (7%) to PE, which were not modified by endothelial removal. Under the prostanoids blockade, vasocontraction was decreased more in apoE-veh (-37%) than in WT (-27%) and apoE-sil (-30%) mice. NADPH-oxidase blockade abolished the enhanced contractile responsiveness in apoE-veh (-33%), without effects in WT and apoE-sil groups. The atherosclerotic lesions and the imbalance of NO/ROS were reduced (40%) in apoE-sil mice. In conclusion, ED in apoE mice was characterized by decreased NO-bioavailability and contractile hyperresponsiveness, due to thromboxane and oxidative stress, and was normalized by sildenafil. The beneficial effects of this phosphodiesterase-5 inhibitor on ED and lipid deposition provide new insights for its use as adjuvant in the treatment of atherosclerosis.


Journal of Translational Medicine | 2014

Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension

Ananda T. Dias; Amanda Cintra; Jessica Frossard; Zaira Palomino; Dulce Elena Casarini; Isabele Beserra Santos Gomes; Camille M. Balarini; Agata L. Gava; Bianca P. Campagnaro; Thiago M.C. Pereira; Silvana S. Meyrelles; Elisardo C Vasquez

BackgroundThe clipping of an artery supplying one of the two kidneys (2K1C) activates the renin-angiotensin (Ang) system (RAS), resulting in hypertension and endothelial dysfunction. Recently, we demonstrated the intrarenal beneficial effects of sildenafil on the high levels of Ang II and reactive oxygen species (ROS) and on high blood pressure (BP) in 2K1C mice. Thus, in the present study, we tested the hypothesis that sildenafil improves endothelial function in hypertensive 2K1C mice by improving the NO/ROS balance.Methods2K1C hypertension was induced in C57BL/6 mice. Two weeks later, they were treated with sildenafil (40 mg/kg/day, via oral) or vehicle for 2 weeks and compared with sham mice. At the end of the treatment, the levels of plasma and intrarenal Ang peptides were measured. Endothelial function and ROS production were assessed in mesenteric arterial bed (MAB).ResultsThe 2K1C mice exhibited normal plasma levels of Ang I, II and 1–7, whereas the intrarenal Ang I and II were increased (~35% and ~140%) compared with the Sham mice. Sildenafil normalized the intrarenal Ang I and II and increased the plasma (~45%) and intrarenal (+15%) Ang 1–7. The 2K1C mice exhibited endothelial dysfunction, primarily due to increased ROS and decreased NO productions by endothelial cells, which were ameliorated by treatment with sildenafil.ConclusionThese data suggest that the effects of sildenafil on endothelial dysfunction in 2K1C mice may be due to interaction with RAS and restoring NO/ROS balance in the endothelial cells from MAB. Thus, sildenafil is a promising candidate drug for the treatment of hypertension accompanied by endothelial dysfunction and kidney disease.


Lipids in Health and Disease | 2011

Hypercholesterolemia promotes early renal dysfunction in apolipoprotein E-deficient mice

Camille M Balarini; Mariana Zt Oliveira; Thiago Mc Pereira; N.F. Silva; Elisardo C. Vasquez; Silvana S. Meyrelles; Agata L. Gava

BackgroundAging and dyslipidemia are processes which can lead to deleterious consequences to renal function. Therefore, the aim of this study was to determine the effects of both hypercholesterolemia and aging on renal function in mice.MethodsMale hypercholesterolemic apolipoprotein E-deficient mice (ApoE, n = 13) and age-matched C57BL/6 control mice (C57, n = 15) were studied at 2 (young) and 8 (adult) month-old. At each time point, animals were placed in metabolic cages for 24 hours to urine volume and urinary creatinine quantification. Blood samples were collected for serum cholesterol, urea and creatinine measurements. Glomerular filtration rate (GFR) was estimated through creatinine clearance determination. Mesangial expansion was evaluated by Periodic Acid Schiff staining, renal fibrosis was determined through Massons trichrome staining and neuronal nitric oxide synthase (nNOS) expression in the kidney was performed by Western Blotting. To statistical analysis two-way ANOVA followed by Fishers post hoc test was used.ResultsTotal plasma cholesterol was increased about 5-fold in ApoE mice at both time points compared to C57 animals. At 2-month-old, GFR was already markedly reduced in ApoE compared to C57 mice (187 ± 28 vs 358 ± 92 μL/min, p < 0.05). Adult C57 (-77%) and ApoE (-50%) mice also presented a significant reduction of GFR. In addition, serum urea was significantly increased in young ApoE animals compared to C57 mice (11 ± 1.3 vs 7 ± 0.9 mmol/L, p < 0.01). A significant mesangial expansion was observed at 2-month old ApoE mice compared to C57 mice (35 ± 0.6 vs 30 ± 0.9%, respectively, p < 0.05), which was aggravated at 8-month old animals (40 ± 3 and 35 ± 3%, respectively). Tubulointersticial fibrosis was augmented at both young (17 ± 2%, p < 0.05) and adult (20 ± 1%, p < 0.05) ApoE mice compared to respective C57 age controls (8 ± 1 and 12 ± 2%, respectively). The expression of nNOS was markedly reduced in a time-dependent manner in both strains.ConclusionsThese data show that both hypercholesterolemia and aging contribute to the loss of renal function in mice.

Collaboration


Dive into the Agata L. Gava's collaboration.

Top Co-Authors

Avatar

Silvana S. Meyrelles

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camille M. Balarini

Federal University of Paraíba

View shared research outputs
Top Co-Authors

Avatar

Bianca P. Campagnaro

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Ananda T. Dias

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Marcella L. Porto

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flavia Ps Freitas

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Isabele Beserra Santos Gomes

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Jones Bernardes Graceli

Universidade Federal do Espírito Santo

View shared research outputs
Researchain Logo
Decentralizing Knowledge