Bianca P. Campagnaro
Universidade Federal do Espírito Santo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bianca P. Campagnaro.
International Journal of Molecular Sciences | 2013
Clarissa Loureiro Tonini; Bianca P. Campagnaro; Lis P. S. Louro; Thiago Melo Costa Pereira; Elisardo C. Vasquez; Silvana S.MeyrellesS.S. Meyrelles
Recent evidence from apolipoprotein E-deficient (apoE−/−) mice shows that aging and atherosclerosis are closely associated with increased oxidative stress and DNA damage in some cells and tissues. However, bone marrow cells, which are physiologically involved in tissue repair have not yet been investigated. In the present study, we evaluated the influence of aging and hypercholesterolemia on oxidative stress, DNA damage and apoptosis in bone marrow cells from young and aged apoE−/− mice compared with age-matched wild-type C57BL/6 (C57) mice, using the comet assay and flow cytometry. The production of both superoxide and hydrogen peroxide in bone marrow cells was higher in young apoE−/− mice than in age-matched C57 mice, and reactive oxygen species were increased in aged C57 and apoE−/− mice. Similar results were observed when we analyzed the DNA damage and apoptosis. Our data showed that both aging and hypercholesterolemia induce the increased production of oxidative stress and consequently DNA damage and apoptosis in bone marrow cells. This study is the first to demonstrate a functionality decrease of the bone marrow, which is a fundamental extra-arterial source of the cells involved in vascular injury repair.
Lipids in Health and Disease | 2011
Marcella L. Porto; Leandro Cf Lima; Thiago Mc Pereira; Breno Valentim Nogueira; Clarissa Loureiro Tonini; Bianca P. Campagnaro; Silvana S. Meyrelles; Elisardo C. Vasquez
BackgroundRecent studies have highlighted the potential of cell therapy for atherosclerosis. The aim of this study was to evaluate the effects of mononuclear cell (MNC) therapy on the development of atherosclerotic lesions in the apolipoprotein E knockout (apoE KO) mouse.MethodsWe investigated vascular lipid deposition, vascular remodeling, oxidative stress, and endothelial nitric oxide synthase (eNOS) expression in apoE KO mice treated with spleen MNCs isolated from lacZ transgenic mice (apoE KO-MNC) for 8 weeks compared to untreated control mice (apoE KO).ResultsHistological analysis of aortas showed a significant reduction in the lipid deposition area in apoE KO-MNC mice compared to apoE KO mice (0.051 ± 0.004 vs 0.117 ± 0.016 mm2, respectively, p < 0.01). In addition, vessel morphometry revealed that MNC therapy prevented the outward (positive) remodeling in apoE KO mice that is normally observed (apoE KO-MNC: 0.98 ± 0.07 vs apoE KO: 1.37 ± 0.09), using wild-type mice (C57BL/6J) as a reference. ApoE KO-MNC mice also have reduced production of superoxide anions and increased eNOS expression compared to apoE KO mice. Finally, immunohistochemistry analysis revealed a homing of endothelial progenitor cells (EPCs) in the aortas of apoE KO-MNC mice.ConclusionMNC therapy attenuates the progression of atherosclerosis in the aortas of apoE KO mice. Our data provide evidence that the mechanism by which this attenuation occurs includes the homing of EPCs, a decrease in oxidative stress and an upregulation of eNOS expression.
DNA and Cell Biology | 2013
Bianca P. Campagnaro; Clarissa Loureiro Tonini; Luciano M. Doche; Breno Valentim Nogueira; Elisardo C. Vasquez; Silvana S. Meyrelles
Angiotensin II (Ang II), which plays a pivotal role in the pathophysiology of the two-kidney, one-clip (2K1C) Goldblatt hypertension, has been associated with augmented generation of reactive oxygen species (ROS) in some cells and tissues. In the present study, we evaluated the influence of 2K1C hypertension on oxidative stress, DNA fragmentation, and apoptosis of bone marrow (BM) cells. Two weeks after the renal artery clipping or Sham operation, flow cytometry analysis showed a higher production of superoxide anions (approximately sixfold) and hydrogen peroxide (approximately twofold) in 2K1C hypertensive than in Sham normotensive mice. 2K1C mice also showed an augmented DNA fragmentation (54%) and apoptotic cells (21%). Our data show that the 2K1C renovascular hypertension is characterized by an increased production of ROS, DNA damage, and apoptosis of BM, which is a fundamental source of the cells involved in tissue repair.
Lipids in Health and Disease | 2012
Leandro Cf Lima; Marcella L. Porto; Bianca P. Campagnaro; Clarissa Loureiro Tonini; Breno Valentim Nogueira; Thiago Mc Pereira; Elisardo C. Vasquez; Silvana S. Meyrelles
BackgroundStem/progenitor cell-based therapy has successfully been used as a novel therapeutic strategy for vascular diseases triggered by endothelial dysfunction. The aim of this study was to investigate the effects of mononuclear cell (MNC) therapy in situ on carotid cuff-induced occlusive thrombus in the apolipoprotein E knockout (apoE-/-) mouse.MethodsSpleen-derived MNCs were isolated from green fluorescent protein (GFP)-transgenic mice for cell treatment. A cuff-induced thrombus model was produced by placing a nonconstrictive silastic collar around the left common carotid artery in 20-week-old female apoE-/- mice. After 10 days, the cuff was removed, and the animals received in situ MNCs (Cuff-MNC) or vehicle (Cuff-Vehicle) and were compared with sham-operated animals (Sham).ResultsThe histological analysis showed that the MNC treatment reverted occlusive thrombus formation compared to the vehicle and the vessel lumen area to that observed in the Sham group (MNC, 50 ± 4; Vehicle, 20 ± 4; Sham, 55 ± 2 x103 μm2; p < 0.01). The animals that underwent the carotid cuff placement developed compensatory vessel enlargement, which was reduced by the MNC therapy. In addition, the treatment was able to reduce superoxide anion production, which likely contributed to the reduced apoptosis that was observed. Lastly, the immunofluorescence analysis revealed the presence of endothelial progenitor cells (EPCs) in the carotid endothelia of the apoE-/- mice.ConclusionIn situ short-term MNC therapy was able to revert cuff-induced occlusive thrombi in the carotid arteries of apoE-/- mice, possibly through the homing of EPCs, reduction of oxidative stress and decreased apoptosis.
Lipids in Health and Disease | 2013
Bianca P Rodrigues; Bianca P. Campagnaro; Camille M Balarini; Thiago M.C. Pereira; Silvana S. Meyrelles; Elisardo C Vasquez
BackgroundIt is well known that enhanced production of reactive oxygen species (ROS) leads to oxidative stress observed in atherosclerosis and that ROS can also cause damage in cellular macromolecules, including DNA. Considering previous report that sildenafil, an inhibitor of phosphodiesterase 5 (PDE5), has antioxidant effects, in the present study we evaluated the effect of this drug on genotoxicity of blood mononuclear cells (MNC) and liver cells from atherosclerotic apolipoprotein E knockout mice (apoE-/-).MethodsROS production in MNC was evaluated by flow cytometry with the fluorescent dye dihydroethidium (DHE), a method that has been used to quantify the production of superoxide anion, and DNA damage was evaluated in both MNC and liver cells using the alkaline comet assay. Sildenafil-administered apoE-/- mice were compared with strain-matched mice administered with vehicle and with C57BL/6 wild-type (WT) mice.ResultsMNC from apoE-/- vehicle exhibited a 2-fold increase in production of superoxide anion in comparison with WT. In contrast, sildenafil-administered apoE-/- mice showed superoxide anion levels similar to those observed in WT mice. Similarly, MNC and liver cells from apoE-/- vehicle mice showed a 4-fold and 2-fold augmented DNA fragmentation compared with WT, respectively, and sildenafil-administered apoE-/- mice exhibited minimal DNA damage in those cells similar to WT mice.ConclusionsApoE-/- mice chronically administered with sildenafil exhibited reduced levels of superoxide anion in MNC and less DNA fragmentation in MNC and liver cells, which are biomarkers of genotoxicity. Therefore, sildenafil may offer a new perspective to the use of PDE5 inhibitors to protect against DNA damage, in cells involved in the inflammatory and dyslipidemic processes that accompany atherosclerosis.
International Journal of Hypertension | 2012
Bianca P. Campagnaro; Agata L. Gava; Silvana S. Meyrelles; Elisardo C. Vasquez
Mouse models provide powerful tools for studying the mechanisms underlying the dysfunction of the autonomic reflex control of cardiovascular function and those involved in cardiovascular diseases. The established murine model of two-kidney, one-clip (2K1C) angiotensin II-dependent hypertension represents a useful tool for studying the neural control of cardiovascular function. In this paper, we discuss the main contributions from our laboratory and others regarding cardiac-autonomic imbalance and baroreflex dysfunction. We show recent data from the angiotensin-dependent hypertensive mouse demonstrating DNA damage and oxidative stress using the comet assay and flow cytometry, respectively. Finally, we highlight the relationships between angiotensin and peripheral and central nervous system areas of cardiovascular control and oxidative stress in the 2K1C hypertensive mouse.
Journal of Translational Medicine | 2014
Ananda T. Dias; Amanda Cintra; Jessica Frossard; Zaira Palomino; Dulce Elena Casarini; Isabele Beserra Santos Gomes; Camille M. Balarini; Agata L. Gava; Bianca P. Campagnaro; Thiago M.C. Pereira; Silvana S. Meyrelles; Elisardo C Vasquez
BackgroundThe clipping of an artery supplying one of the two kidneys (2K1C) activates the renin-angiotensin (Ang) system (RAS), resulting in hypertension and endothelial dysfunction. Recently, we demonstrated the intrarenal beneficial effects of sildenafil on the high levels of Ang II and reactive oxygen species (ROS) and on high blood pressure (BP) in 2K1C mice. Thus, in the present study, we tested the hypothesis that sildenafil improves endothelial function in hypertensive 2K1C mice by improving the NO/ROS balance.Methods2K1C hypertension was induced in C57BL/6 mice. Two weeks later, they were treated with sildenafil (40 mg/kg/day, via oral) or vehicle for 2 weeks and compared with sham mice. At the end of the treatment, the levels of plasma and intrarenal Ang peptides were measured. Endothelial function and ROS production were assessed in mesenteric arterial bed (MAB).ResultsThe 2K1C mice exhibited normal plasma levels of Ang I, II and 1–7, whereas the intrarenal Ang I and II were increased (~35% and ~140%) compared with the Sham mice. Sildenafil normalized the intrarenal Ang I and II and increased the plasma (~45%) and intrarenal (+15%) Ang 1–7. The 2K1C mice exhibited endothelial dysfunction, primarily due to increased ROS and decreased NO productions by endothelial cells, which were ameliorated by treatment with sildenafil.ConclusionThese data suggest that the effects of sildenafil on endothelial dysfunction in 2K1C mice may be due to interaction with RAS and restoring NO/ROS balance in the endothelial cells from MAB. Thus, sildenafil is a promising candidate drug for the treatment of hypertension accompanied by endothelial dysfunction and kidney disease.
Toxicology in Vitro | 2015
Marcella L. Porto; Layla Mendonça Lírio; Ananda T. Dias; Alan T. Batista; Bianca P. Campagnaro; José Geraldo Mill; Silvana S. Meyrelles; Marcelo Perim Baldo
BACKGROUND Measuring of oxidative stress in peripheral blood mononuclear cells is a suitable model of dietary induced systemic oxidative stress. Thus, we aimed to evaluate whether a chronic high fructose intake could induce oxidative damage in peripheral blood and bone marrow mononuclear cells of rats. METHODS Animals were randomly assigned to the following groups: Control group (standard rat chow and tap water n=8), and Fructose group (standard rat chow and a 10% fructose solution in the drinking water n=8). Reactive oxygen species and cytokines were measure using flow cytometry in peripheral blood and bone-marrow mononuclear cells. Apoptotic cell death and the advanced oxidation protein products (AOPP) were also determined. RESULTS We observed a significant increase in ROS production in peripheral blood mononuclear cells of fructose group as compared to control rats. Apoptosis and the AOPP were higher in those animals underwent high fructose intake. Serum levels of IL-6 and IL-12 were also increased after 12 weeks of high fructose intake. CONCLUSION We concluded that fructose intake leads to systemic oxidative stress and pro-inflammatory condition which affect peripheral blood mononuclear cells and bone-marrow mononuclear cells viability.
Current Pharmaceutical Biotechnology | 2016
Elisardo C. Vasquez; Agata L. Gava; Jones Bernardes Graceli; Camille M. Balarini; Bianca P. Campagnaro; Thiago Melo Costa Pereira; Silvana S. Meyrelles
The usefulness of selective inhibitors of phosphodiesterase 5 (PDE5) is well known, first for the treatment of male erectile dysfunction and more recently for pulmonary hypertension. The discovery that PDE5 is present in the systemic artery endothelium and smooth muscle cells led investigators to test the extra sexual effects of sildenafil, the first and most investigated PDE5 inhibitor, in diseases affecting the systemic arteries. Cumulative data from experimental and clinical studies have revealed beneficial effects of sildenafil on systemic arterial hypertension and its target organs, such as the heart, kidneys and vasculature. An important effect of sildenafil is reduction of hypertension and improvement of endothelial function in experimental models of hypertension and hypertensive subjects. Interestingly, in angiotensin-dependent hypertension, its beneficial effects on endothelial and kidney dysfunctions seem to at least in part be caused by its ability to decrease the levels of angiotensin II and increase angiotensin 1-7, in addition to improving nitric oxide bioavailability and diminishing reactive oxygen species. Another remarkable finding on the effects of sildenafil comes from studies in apolipoprotein E knockout mice, a model of atherosclerosis that closely resembles human atherosclerotic disease. In this review, we focus on the promising beneficial effects of sildenafil for treating systemic high blood pressure, especially resistant hypertension, and the endothelial dysfunction that is present in hypertension and atherosclerosis.
International Journal of Hypertension | 2013
Bianca P. Campagnaro; Clarissa Loureiro Tonini; Breno Valentim Nogueira; Dulce Elena Casarini; Elisardo C. Vasquez; Silvana S. Meyrelles
It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage.