Agata Malinowska
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agata Malinowska.
Database | 2009
Olivier Arnaiz; Agata Malinowska; Catherine Klotz; Linda Sperling; Michal Dadlez; Jean Cohen
Ciliopathies, pleiotropic diseases provoked by defects in the structure or function of cilia or flagella, reflect the multiple roles of cilia during development, in stem cells, in somatic organs and germ cells. High throughput studies have revealed several hundred proteins that are involved in the composition, function or biogenesis of cilia. The corresponding genes are potential candidates for orphan ciliopathies. To study ciliary genes, model organisms are used in which particular questions on motility, sensory or developmental functions can be approached by genetics. In the course of high throughput studies of cilia in Paramecium tetraurelia, we were confronted with the problem of comparing our results with those obtained in other model organisms. We therefore developed a novel knowledgebase, Cildb, that integrates ciliary data from heterogeneous sources. Cildb links orthology relationships among 18 species to high throughput ciliary studies, and to OMIM data on human hereditary diseases. The web interface of Cildb comprises three tools, BioMart for complex queries, BLAST for sequence homology searches and GBrowse for browsing the human genome in relation to OMIM information for human diseases. Cildb can be used for interspecies comparisons, building candidate ciliary proteomes in any species, or identifying candidate ciliopathy genes. Database URL: http://cildb.cgm.cnrs-gif.fr
Journal of Proteomics | 2011
Cyril Thouverey; Agata Malinowska; Marcin Balcerzak; Agnieszka Strzelecka-Kiliszek; René Buchet; Michal Dadlez; Slawomir Pikula
Matrix vesicles (MVs), released by budding from apical microvilli of osteoblasts during bone formation and development, are involved in the initiation of mineralization by promoting the formation of hydroxyapatite in their lumen. To gain additional insights into MV biogenesis and functions, MVs and apical microvilli were co-isolated from mineralizing osteoblast-like Saos-2 cells and their proteomes were characterized using LC-ESI-MS/MS and compared. In total, 282 MV and 451 microvillar proteins were identified. Of those, 262 were common in both preparations, confirming that MVs originate from apical microvilli. The occurrence of vesicular trafficking molecules (e.g. Rab proteins) and of the on-site protein synthetic machinery suggests that cell polarization and apical targeting are required for the incorporation of specific lipids and proteins at the site of MV formation. MV release from microvilli may be driven by actions of actin-severing proteins (gelsolin, cofilin 1) and contractile motor proteins (myosins). In addition to the already known proteins involved in MV-mediated mineralization, new MV residents were detected, such as inorganic pyrophosphatase 1, SLC4A7 sodium bicarbonate cotransporter or sphingomyelin phosphodiesterase 3, providing additional insights into MV functions.
Journal of Cell Science | 2008
Delphine Gogendeau; Catherine Klotz; Olivier Arnaiz; Agata Malinowska; Michal Dadlez; Nicole Garreau de Loubresse; Françoise Ruiz; Janine Beisson
In addition to their key role in the duplication of microtubule organising centres (MTOCs), centrins are major constituents of diverse MTOC-associated contractile arrays. A centrin partner, Sfi1p, has been characterised in yeast as a large protein carrying multiple centrin-binding sites, suggesting a model for centrin-mediated Ca2+-induced contractility and for the duplication of MTOCs. In vivo validation of this model has been obtained in Paramecium, which possesses an extended contractile array – the infraciliary lattice (ICL) – essentially composed of centrins and a huge Sfi1p-like protein, PtCenBP1p, which is essential for ICL assembly and contractility. The high molecular diversity revealed here by the proteomic analysis of the ICL, including ten subfamilies of centrins and two subfamilies of Sf1p-like proteins, led us to address the question of the functional redundancy, either between the centrin-binding proteins or between the centrin subfamilies. We show that all are essential for ICL biogenesis. The two centrin-binding protein subfamilies and nine of the centrin subfamilies are ICL specific and play a role in its molecular and supramolecular architecture. The tenth and most conserved centrin subfamily is present at three cortical locations (ICL, basal bodies and contractile vacuole pores) and might play a role in coordinating duplication and positioning of cortical organelles.
Proteomics Clinical Applications | 2009
Magda Bakun; Jakub Karczmarski; Jarosław Poznański; Tymon Rubel; Małgorzata Rózga; Agata Malinowska; Dorota Sands; Ewa E. Hennig; Janusz Oledzki; Jerzy Ostrowski; Michal Dadlez
Mounting evidence indicates that MS analysis of the human blood peptidome allows to distinguish between cancer and non‐cancer samples, giving promise for a new MS‐based diagnostic tool. However, several aspects of already published work have been criticized and demand for more methodical approach has been formulated. Motivated by this we undertook a systematic study of the plasma and serum peptidome using an integrated ESI‐LC‐MS‐based platform, equipped with new data analysis tools for relative and absolute peptide quantitation. We used a high resolution LC‐ESI‐MS to analyze well‐separated MS signals corresponding to peptides, and measured the variability of >1000 peptide signal amplitudes across a set of plasma and serum samples from healthy individuals. By spiking serum samples with known amounts of isotopically labeled versions of a selected set of peptides we measured the variability of their absolute concentration in this sample set and demonstrated a strong influence of clotting time on the concentration of these peptides in serum. Finally, we used this new LC‐ESI‐MS analytical platform for the differential analysis of healthy versus colon cancer serum samples and found that it was possible to distinguish the two groups with 89.8% sensitivity and 94.6% specificity.
Journal of Proteomics | 2012
Agata Malinowska; Michał Kistowski; Magda Bakun; Tymon Rubel; Marta Tkaczyk; Jolanta Mierzejewska; Michal Dadlez
Mass spectrometry-based global proteomics experiments generate large sets of data that can be converted into useful information only with an appropriate statistical approach. We present Diffprot - a software tool for statistical analysis of MS-derived quantitative data. With implemented resampling-based statistical test and local variance estimate, Diffprot allows to draw significant results from small scale experiments and effectively eliminates false positive results. To demonstrate the advantages of this software, we performed two spike-in tests with complex biological matrices, one label-free and one based on iTRAQ quantification; in addition, we performed an iTRAQ experiment on bacterial samples. In the spike-in tests, protein ratios were estimated and were in good agreement with theoretical values; statistical significance was assigned to spiked proteins and single or no false positive results were obtained with Diffprot. We compared the performance of Diffprot with other statistical tests - widely used t-test and non-parametric Wilcoxon test. In contrast to Diffprot, both generated many false positive hits in the spike-in experiment. This proved the superiority of the resampling-based method in terms of specificity, making Diffprot a rational choice for small scale high-throughput experiments, when the need to control the false positive rate is particularly pressing.
Oncotarget | 2016
Anna Trzeciecka; Szymon Klossowski; Malgorzata Bajor; Radoslaw Zagozdzon; Pawel Gaj; Angelika Muchowicz; Agata Malinowska; Anna Czerwoniec; Joanna Barankiewicz; Antoni Domagala; Justyna Chlebowska; Monika Prochorec-Sobieszek; Magdalena Winiarska; Ryszard Ostaszewski; Iwonna Gwizdalska; Jakub Golab; Dominika Nowis; Malgorzata Firczuk
Burkitt lymphoma is a fast-growing tumor derived from germinal center B cells. It is mainly treated with aggressive chemotherapy, therefore novel therapeutic approaches are needed due to treatment toxicity and developing resistance. Disturbance of red-ox homeostasis has recently emerged as an efficient antitumor strategy. Peroxiredoxins (PRDXs) are thioredoxin-family antioxidant enzymes that scavenge cellular peroxides and contribute to red-ox homeostasis. PRDXs are robustly expressed in various malignancies and critically involved in cell proliferation, differentiation and apoptosis. To elucidate potential role of PRDXs in lymphoma, we studied their expression level in B cell-derived primary lymphoma cells as well as in cell lines. We found that PRDX1 and PRDX2 are upregulated in tumor B cells as compared with normal counterparts. Concomitant knockdown of PRDX1 and PRDX2 significantly attenuated the growth rate of lymphoma cells. Furthermore, in human Burkitt lymphoma cell lines, we isolated dimeric 2-cysteine peroxiredoxins as targets for SK053, a novel thiol-specific small-molecule peptidomimetic with antitumor activity. We observed that treatment of lymphoma cells with SK053 triggers formation of covalent PRDX dimers, accumulation of intracellular reactive oxygen species, phosphorylation of ERK1/2 and AKT and leads to cell cycle arrest and apoptosis. Based on site-directed mutagenesis and modeling studies, we propose a mechanism of SK053-mediated PRDX crosslinking, involving double thioalkylation of active site cysteine residues. Altogether, our results suggest that peroxiredoxins are novel therapeutic targets in Burkitt lymphoma and provide the basis for new approaches to the treatment of this disease.
Molecular & Cellular Proteomics | 2016
Lukasz P. Slomnicki; Agata Malinowska; Michał Kistowski; Antoni Palusiński; Jing-Juan Zheng; Mari Sepp; Tõnis Timmusk; Michal Dadlez; Michal Hetman
To study nucleolar involvement in brain development, the nuclear and nucleolar proteomes from the rat cerebral cortex at postnatal day 7 were analyzed using LC-MS/iTRAQ methodology. Data of the analysis are available via ProteomeXchange with identifier PXD002188. Among 504 candidate nucleolar proteins, the overrepresented gene ontology terms included such cellular compartmentcategories as “nucleolus”, “ribosome” and “chromatin”. Consistent with such classification, the most overrepresented functional gene ontology terms were related to RNA metabolism/ribosomal biogenesis, translation, and chromatin organization. Sixteen putative nucleolar proteins were associated with neurodevelopmental phenotypes in humans. Microcephaly and/or cognitive impairment were the most common phenotypic manifestations. Although several such proteins have links to ribosomal biogenesis and/or genomic stability/chromatin structure (e.g. EMG1, RPL10, DKC1, EIF4A3, FLNA, SMC1, ATRX, MCM4, NSD1, LMNA, or CUL4B), others including ADAR, LARP7, GTF2I, or TCF4 have no such connections known. Although neither the Alazami syndrome-associated LARP7nor the Pitt-Hopkins syndrome-associated TCF4 were reported in nucleoli of non-neural cells, in neurons, their nucleolar localization was confirmed by immunostaining. In cultured rat hippocampal neurons, knockdown of LARP7 reduced both perikaryal ribosome content and general protein synthesis. Similar anti-ribosomal/anti-translation effects were observed after knockdown of the ribosomal biogenesis factor EMG1 whose deficiency underlies Bowen-Conradi syndrome. Finally, moderate reduction of ribosome content and general protein synthesis followed overexpression of two Pitt-Hopkins syndrome mutant variants of TCF4. Therefore, dysregulation of ribosomal biogenesis and/or other functions of the nucleolus may disrupt neurodevelopment resulting in such phenotypes as microcephaly and/or cognitive impairment.
Blood | 2017
Malgorzata Bobrowicz; Michal Dwojak; Beata Pyrzynska; Joanna Stachura; Angelika Muchowicz; Elise Berthel; Nicole Dalla-Venezia; Mieszko Kozikowski; Marta Siernicka; Nina Miazek; Piotr Zapala; Antoni Domagala; Kamil Bojarczuk; Agata Malenda; Joanna Barankiewicz; Agnieszka Graczyk-Jarzynka; Agnieszka Zagozdzon; Magdalena Gabrysiak; Jean-Jacques Diaz; Marta Karp; Ewa Lech-Marańda; Malgorzata Firczuk; Krzysztof Giannopoulos; Dimitar G. Efremov; Luca Laurenti; Dunja Baatout; Lukas P. Frenzel; Agata Malinowska; Mikolaj Slabicki; Thorsten Zenz
Downregulation of CD20, a molecular target for monoclonal antibodies (mAbs), is a clinical problem leading to decreased efficacy of anti-CD20-based therapeutic regimens. The epigenetic modulation of CD20 coding gene (MS4A1) has been proposed as a mechanism for the reduced therapeutic efficacy of anti-CD20 antibodies and confirmed with nonselective histone deacetylase inhibitors (HDACis). Because the use of pan-HDACis is associated with substantial adverse effects, the identification of particular HDAC isoforms involved in CD20 regulation seems to be of paramount importance. In this study, we demonstrate for the first time the role of HDAC6 in the regulation of CD20 levels. We show that inhibition of HDAC6 activity significantly increases CD20 levels in established B-cell tumor cell lines and primary malignant cells. Using pharmacologic and genetic approaches, we confirm that HDAC6 inhibition augments in vitro efficacy of anti-CD20 mAbs and improves survival of mice treated with rituximab. Mechanistically, we demonstrate that HDAC6 influences synthesis of CD20 protein independently of the regulation of MS4A1 transcription. We further demonstrate that translation of CD20 mRNA is significantly enhanced after HDAC6 inhibition, as shown by the increase of CD20 mRNA within the polysomal fraction, indicating a new role of HDAC6 in the posttranscriptional mechanism of CD20 regulation. Collectively, our findings suggest HDAC6 inhibition is a rational therapeutic strategy to be implemented in combination therapies with anti-CD20 monoclonal antibodies and open up novel avenues for the clinical use of HDAC6 inhibitors.
Cell & Bioscience | 2017
Zofia F. Bielecka; Agata Malinowska; Klaudia K. Brodaczewska; Aleksandra Klemba; Claudine Kieda; Paweł Krasowski; Elżbieta Grzesiuk; Jan Piwowarski; Anna M. Czarnecka; Cezary Szczylik
BackgroundThe aim of this study is to determine the effect of hypoxia on axitinib and sorafenib-treated renal cell carcinoma (RCC) cells. Hypoxia is a crucial factor influencing transcription process via protein modulation, which was shown i.e. in pancreatic cancer. Until now, hypoxia has been defined as associated with poorer outcome and inducing chemotherapy resistance in solid tumors. The unique phenomenon of pseudo-hypoxia connected with vhl mutation was observed in clear-cell, but not in papillary RCC, and the treatment of this subtype of cancer is still challenging. Despite the introduction of new antiangiogenic targeted therapies (inter alia tyrosine kinase inhibitors, TKIs), patients still develop both primary and acquired resistance. Overcoming resistance to TKIs, also in papillary RCC, may be possible by finding significantly modified protein expression. To do this, hypoxic 3D in vitro models must be developed to mimic both molecular pathways typical for low oxygen tension and cell–cell dynamics in tumor-like spatial structures.ResultsClear-cell and papillary renal cell carcinoma (cc and pRCC) cell lines were used in the study to determine the impact of hypoxia on primary drug resistance phenomenon previously observed in papillary, but not in ccRCC. Resistance was confirmed in monolayer culture and in 3D models in soft agar and suspension culture. Human papillary kidney cancer stem-like cells (HKCSCs) cultured in hypoxia developed resistance to sorafenib, while when cultured in normoxia resistance to axitinib has developed. Flow cytometry revealed that hypoxia decreased proliferation rates in all investigated RCC cells. In HKCSCs, there was an increase of quiescent cells (Ki67−) and percentage of cells arrested in S phase. It also appeared that map2k1 and eif4b protein expression is altered in papillary RCC resistant to tested drugs at different oxygen tensions. Also, HKCSCs did not express vegfr-1, braf nor c-kit, TKIs target receptors, which were present in ccRCC cells sensitive to TKI treatment.ConclusionsThe results confirm that low oxygen tension affects RCC cells. Hypoxia facilitates induction of sorafenib resistance in pRCC and induces map2k1 overexpression, while normoxic axitinib-resistant cells up-regulated eif4b. Further studies may determine if map2k1 or eif4b proteins play a role in pRCC resistance to TKIs. It is also of interest to establish if other than vegfr-1, braf, c-kit receptors can serve as potential molecular targets for more effective anti-RCC strategies.
International Journal of Medical Microbiology | 2018
Magdalena J. Grzeszczuk; Katarzyna M. Bocian-Ostrzycka; Anna M. Banaś; Paula Roszczenko-Jasinska; Agata Malinowska; Hanna Stralova; Rainer Haas; Thomas F. Meyer; Elżbieta K. Jagusztyn-Krynicka
Thioloxidoreductase HP0231 of Helicobacter pylori plays essential roles in gastric colonization and related gastric pathology. Comparative proteomics and analysis of complexes between HP0231 and its protein substrates suggested that several Hop proteins are its targets. HP0231 is a dimeric oxidoreductase that functions in an oxidizing Dsb (disulfide bonds) pathway of H. pylori. H. pylori HopQ possesses six cysteine residues, which generate three consecutive disulfide bridges. Comparison of the redox state of HopQ in wild-type cells to that in hp0231-mutated cells clearly indicated that HopQ is a substrate of HP0231. HopQ binds CEACAM1, 3, 5 and 6 (carcinoembryonic antigen-related cell adhesion molecules). This interaction enables T4SS-mediated translocation of CagA into host cells and induces host signaling. Site directed mutagenesis of HopQ (changing cysteine residues into serine) and analysis of the functioning of HopQ variants showed that HP0231 influences the delivery of CagA into host cells, in part through its impact on HopQ redox state. Introduction of a C382S mutation into HopQ significantly affects its reaction with CEACAM receptors, which disturbs T4SS functioning and CagA delivery. An additional effect of HP0231 on other adhesins and their redox state, resulting in their functional impairment, cannot be excluded.