Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelika Muchowicz is active.

Publication


Featured researches published by Angelika Muchowicz.


Molecules | 2011

Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer

Malgorzata Wachowska; Angelika Muchowicz; Malgorzata Firczuk; Magdalena Gabrysiak; Magdalena Winiarska; Malgorzata Wanczyk; Kamil Bojarczuk; Jakub Golab

Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment.


Cancer Research | 2013

Photodynamic Therapy of Murine Mastocytoma Induces Specific Immune Responses against the Cancer/Testis Antigen P1A

Pawel Mroz; Fatma Vatansever; Angelika Muchowicz; Michael R. Hamblin

Photodynamic therapy (PDT) involves the intravenous administration of photosensitizers followed by illumination of the tumor with visible light, leading to local production of reactive oxygen species that cause vascular shutdown and tumor cell death. Antitumor immunity is stimulated after PDT because of the acute inflammatory response that involves activation of the innate immune system, leading to stimulation of adaptive immunity. We carried out PDT using benzoporphyrin derivative and 690-nm light after 15 minutes, in DBA/2 mice bearing either the mastocytoma, P815, which expresses the naturally occurring cancer/testis antigen P1A, or the corresponding tumor P1.204 that lacks P1A expression. Tumor cures, significantly higher survival, and rejection of tumor rechallenge were obtained with P815, which were not seen with P1.204 or seen with P815 growing in nude mice. Both CD4 and CD8 T cells had higher levels of intracellular cytokines when isolated from mice receiving PDT of P815 tumors than P1.204 tumors and CD8 T cells from P815-cured mice recognized the peptide epitope of the P1A antigen (LPYLGWLVF) using pentamer staining. Taken together, these findings show that PDT can induce a potent antigen- and epitope-specific immune response against a naturally occurring mouse tumor antigen.


Journal of Medicinal Chemistry | 2012

Studies toward Novel Peptidomimetic Inhibitors of Thioredoxin–Thioredoxin Reductase System

Szymon Klossowski; Angelika Muchowicz; Malgorzata Firczuk; Marta Świech; Adam Redzej; Jakub Golab; Ryszard Ostaszewski

Thioredoxins (Trx) are ubiquitous multifunctional low-molecular weight proteins that together with thioredoxin reductases (TrxR) participate in the maintenance of protein thiol homeostasis in NADPH-dependent reactions. An increasing number of data reveal that the Trx-TrxR system is an attractive target for anticancer therapies. In this work, we have elaborated a new and simple synthetic approach employing Ugi reaction to synthesize several new inhibitors of this system. The influence of various electrophilic fragments of this new class of compounds on the inhibition of the Trx-TrxR system was evaluated. As a result, a new compound 19a (SK053), which inhibits the activity of the Trx-TrxR system and exhibits antitumor activity, was obtained. Biologic analyses revealed that 19a inhibits induction of NF-κB and AP-1 and decreases H(2)O(2) scavenging capacity in tumor cells. Altogether, we show that 19a is a novel potential antitumor peptidomimetic inhibitor that can be used as a starting compound for further optimization.


Angiogenesis | 2014

Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis

Witold W. Kilarski; Angelika Muchowicz; Malgorzata Wachowska; Renata Mężyk-Kopeć; Jakub Golab; Melody A. Swartz; Patrycja Nowak-Sliwinska

Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.


Oncotarget | 2016

Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma

Anna Trzeciecka; Szymon Klossowski; Malgorzata Bajor; Radoslaw Zagozdzon; Pawel Gaj; Angelika Muchowicz; Agata Malinowska; Anna Czerwoniec; Joanna Barankiewicz; Antoni Domagala; Justyna Chlebowska; Monika Prochorec-Sobieszek; Magdalena Winiarska; Ryszard Ostaszewski; Iwonna Gwizdalska; Jakub Golab; Dominika Nowis; Malgorzata Firczuk

Burkitt lymphoma is a fast-growing tumor derived from germinal center B cells. It is mainly treated with aggressive chemotherapy, therefore novel therapeutic approaches are needed due to treatment toxicity and developing resistance. Disturbance of red-ox homeostasis has recently emerged as an efficient antitumor strategy. Peroxiredoxins (PRDXs) are thioredoxin-family antioxidant enzymes that scavenge cellular peroxides and contribute to red-ox homeostasis. PRDXs are robustly expressed in various malignancies and critically involved in cell proliferation, differentiation and apoptosis. To elucidate potential role of PRDXs in lymphoma, we studied their expression level in B cell-derived primary lymphoma cells as well as in cell lines. We found that PRDX1 and PRDX2 are upregulated in tumor B cells as compared with normal counterparts. Concomitant knockdown of PRDX1 and PRDX2 significantly attenuated the growth rate of lymphoma cells. Furthermore, in human Burkitt lymphoma cell lines, we isolated dimeric 2-cysteine peroxiredoxins as targets for SK053, a novel thiol-specific small-molecule peptidomimetic with antitumor activity. We observed that treatment of lymphoma cells with SK053 triggers formation of covalent PRDX dimers, accumulation of intracellular reactive oxygen species, phosphorylation of ERK1/2 and AKT and leads to cell cycle arrest and apoptosis. Based on site-directed mutagenesis and modeling studies, we propose a mechanism of SK053-mediated PRDX crosslinking, involving double thioalkylation of active site cysteine residues. Altogether, our results suggest that peroxiredoxins are novel therapeutic targets in Burkitt lymphoma and provide the basis for new approaches to the treatment of this disease.


Biochemical Pharmacology | 2014

Adenanthin targets proteins involved in the regulation of disulphide bonds

Angelika Muchowicz; Malgorzata Firczuk; Justyna Chlebowska; Dominika Nowis; Joanna Stachura; Joanna Barankiewicz; Anna Trzeciecka; Szymon Klossowski; Ryszard Ostaszewski; Radoslaw Zagozdzon; Jian-Xin Pu; Han-Dong Sun; Jakub Golab

Adenanthin has been recently shown to inhibit the enzymatic activities of peroxiredoxins (Prdx) I and II through its functional α,β-unsaturated ketone group serving as a Michael acceptor. A similar group is found in SK053, a compound recently developed by our group to target the thioredoxin-thioredoxin reductase (Trx-TrxR) system. This work provides evidence that next to Prdx I and II adenanthin targets additional proteins including thioredoxin-thioredoxin reductase system as well as protein disulfide isomerase (PDI) that contain a characteristic structural motif, referred to as a thioredoxin fold. Adenanthin inhibits the activity of Trx-TR system and PDI in vitro in the insulin reduction assay and decreases the activity of Trx in cultured cells. Moreover, we identified Trx-1 as an adenanthin binding protein in cells incubated with biotinylated adenanthin as an affinity probe. The results of our studies indicate that adenanthin is a mechanism-selective, rather than an enzyme-specific inhibitor of enzymes containing readily accessible, nucleophilic cysteines. This observation might be of importance in considering potential therapeutic applications of adenanthin to include a range of diseases, where aberrant activity of Prdx, Trx-TrxR and PDI is involved in their pathogenesis.


PLOS ONE | 2014

Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships

Maciej Serda; Danuta S. Kalinowski; Nathalie Rasko; Eliška Potůčková; Anna Mrozek-Wilczkiewicz; Robert Musiol; J.G. Małecki; Mieczysław Sajewicz; Alicja Ratuszna; Angelika Muchowicz; Jakub Gołąb; Tomáš Šimůnek; Des R. Richardson; Jaroslaw Polanski

Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized “soft” donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.


ACS Medicinal Chemistry Letters | 2014

Iron Chelators in Photodynamic Therapy Revisited: Synergistic Effect by Novel Highly Active Thiosemicarbazones

Anna Mrozek-Wilczkiewicz; Maciej Serda; Robert Musiol; Grzegorz Malecki; Agnieszka Szurko; Angelika Muchowicz; Jakub Golab; Alicja Ratuszna; Jaroslaw Polanski

In photodynamic therapy (PDT), a noninvasive anticancer treatment, visible light, is used as a magic bullet selectively destroying cancer cells by a photosensitizer that is nontoxic in the dark. Protoporphyrin IX (PpIX) is a natural photosensitizer synthesized in the cell, which is also a chelating agent that if bonded to Fe(2+) forms heme, a central component of hemoglobin. Therefore, xenobiotic iron chelators can disturb iron homeostasis, increasing the accumulation of PpIX, obstructing the last step of heme biosynthesis, and enhancing PDT efficiency. However, the attempts to use this promising idea have not proved to be hugely successful. Herein, we revisited this issue by analyzing the application of iron chelators highly toxic in the dark, which should have higher Fe(2+) affinity than the nontoxic chelators used so far. We have designed and prepared thiosemicarbazones (TSC) with the highest dark cellular cytotoxicity among TSCs ever reported. We demonstrate that compound 2 exerts powerful PDT enhancement when used in combination with 5-aminolevulinic acid (ALA), a precursor of PpIX.


Central European Journal of Immunology | 2015

Immunological aspects of antitumor photodynamic therapy outcome.

Malgorzata Wachowska; Angelika Muchowicz; Urszula Demkow

Photodynamic therapy (PDT) of cancer is an efficient and promising therapeutic modality approved for the treatment of several types of tumors and non-malignant diseases. It involves administration of a non-toxic photosensitizer followed by illumination of the tumor site with a harmless visible light. A light activated photosensitizer can transfer its energy directly to molecular oxygen, leading to production of highly toxic reactive oxygen species (ROS). Antitumor effects of PDT result from the combination of three independent mechanisms involving direct cytotoxicity to tumor cells, destruction of tumor vasculature and induction of the acute local inflammatory response. PDT-mediated inflammatory reaction is accompanied by tumor infiltration of the leukocytes, enhanced production of pro-inflammatory factors and cytokines. Photodynamic therapy is able to effectively stimulate both the innate and the adaptive arm of the immune system. In consequence, this regimen can lead to development of systemic and specific antitumor immune response. However, there are limited studies suggesting that under some specific circumstances, PDT on its own may exert some immunosuppressive effects leading to activation of immunosuppressive cells or cytokines production. In this report we briefly review all immunological aspects of PDT treatment.


Journal of Biological Chemistry | 2012

Prenyltransferases Regulate CD20 Protein Levels and Influence Anti-CD20 Monoclonal Antibody-mediated Activation of Complement-dependent Cytotoxicity

Magdalena Winiarska; Dominika Nowis; Jacek Bil; Eliza Glodkowska-Mrowka; Angelika Muchowicz; Malgorzata Wanczyk; Kamil Bojarczuk; Michal Dwojak; Malgorzata Firczuk; Ewa Wilczek; Malgorzata Wachowska; Katarzyna Roszczenko; Marta Miaczynska; Justyna Chlebowska; Grzegorz W. Basak; Jakub Golab

Background: The influence of farnesyltransferase inhibitors (FTIs) on CD20 levels is unknown. Results: FTIs increase CD20 expression and improve rituximab-mediated activation of complement-dependent cytotoxicity. Conclusion: FTIs sensitize tumor cells to anti-CD20 mAbs. Significance: The combination of FTIs with anti-CD20 mAbs seems to be a reasonable therapeutic approach worth to be tested in patients with B-cell tumors. Anti-CD20 monoclonal antibodies (mAbs) are successfully used in the management of non-Hodgkin lymphomas and chronic lymphocytic leukemia. We have reported previously that statins induce conformational changes in CD20 molecules and impair rituximab-mediated complement-dependent cytotoxicity. Here we investigated in more detail the influence of farnesyltransferase inhibitors (FTIs) on CD20 expression and antitumor activity of anti-CD20 mAbs. Among all FTIs studied, L-744,832 had the most significant influence on CD20 levels. It significantly increased rituximab-mediated complement-dependent cytotoxicity against primary tumor cells isolated from patients with non-Hodgkin lymphomas or chronic lymphocytic leukemia and increased CD20 expression in the majority of primary lymphoma/leukemia cells. Incubation of Raji cells with L-744,832 led to up-regulation of CD20 at mRNA and protein levels. Chromatin immunoprecipitation assay revealed that inhibition of farnesyltransferase activity was associated with increased binding of PU.1 and Oct-2 to the CD20 promoter sequences. These studies indicate that CD20 expression can be modulated by FTIs. The combination of FTIs with anti-CD20 mAbs is a promising therapeutic approach, and its efficacy should be examined in patients with B-cell tumors.

Collaboration


Dive into the Angelika Muchowicz's collaboration.

Top Co-Authors

Avatar

Jakub Golab

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Firczuk

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Wachowska

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Radoslaw Zagozdzon

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Dominika Nowis

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Magdalena Winiarska

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Antoni Domagala

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Justyna Chlebowska

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Bajor

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge