Agata Plesnar-Bielak
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agata Plesnar-Bielak.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Agata Plesnar-Bielak; Anna M. Skrzynecka; Zofia M. Prokop; Jacek Radwan
Failure of organisms to adapt to sudden environmental changes may lead to extinction. The type of mating system, by affecting fertility and the strength of sexual selection, may have a major impact on a populations chances to adapt and survive. Here, we use experimental evolution in bulb mites (Rhizoglyphus robini) to examine the effects of the mating system on population performance under environmental change. We demonstrate that populations in which monogamy was enforced suffered a dramatic fitness decline when evolving at an increased temperature, whereas the negative effects of change in a thermal environment were alleviated in polygamous populations. Strikingly, within 17 generations, all monogamous populations experiencing higher temperature went extinct, whereas all polygamous populations survived. Our results show that the mating system may have dramatic effects on the risk of extinction under environmental change.
Evolution | 2017
Zofia M. Prokop; Monika A. Prus; Tomasz S. Gaczorek; Karolina Sychta; Joanna K. Palka; Agata Plesnar-Bielak; Magdalena Skarboń
Selection acting on males can reduce mutation load of sexual relative to asexual populations, thus mitigating the twofold cost of sex, provided that it seeks and destroys the same mutations as selection acting on females, but with higher efficiency. This could happen due to sexual selection—a potent evolutionary force that in most systems predominantly affects males. We used replicate populations of red flour beetles (Tribolium castaneum) to study sex‐specific selection against deleterious mutations introduced with ionizing radiation. We found no evidence for selection being stronger in males than in females; in fact, we observed a nonsignificant trend in the opposite direction. This suggests that selection on males does not reduce mutation load below the level expected under the (hypothetical) scenario of asexual reproduction. Additionally, we employed a novel approach, based on a simple model, to quantify the relative contributions of sexual and offspring viability selection to the overall selection observed in males. We found them to be similar in magnitude; however, only the offspring viability component was statistically significant. In summary, we found no support for the hypothesis that selection on males in general, and sexual selection in particular, contributes to the evolutionary maintenance of sex.
The Journal of Experimental Biology | 2013
Agata Plesnar-Bielak; Anna Jawor; Paulina Kramarz
SUMMARY Temperature is a key environmental factor affecting almost all aspects of life history in ectotherms. Theory predicts that they grow faster, reach smaller sizes and produce smaller offspring when temperature increases. In addition, temperature changes, through their effects on metabolism, may also influence the expression of alternative reproductive phenotypes (ARPs) in ectotherms. Although many studies have investigated the phenotypic plasticity of life history traits in relation to temperature change, little is known about how those traits and phenotypic plasticity may evolve together. In our study we subjected bulb mites (non-model, soil organisms that normally experience rather stable thermal conditions) to experimental evolution in two temperature treatments: control (24°C) and elevated (28°C). After 18 generations, we measured adult body size, egg size and development time of both treatments at control as well as at elevated temperatures (test temperatures). Thus, we were able to detect genetic changes (the effects of selection temperature) and environmental effects (the effects of test temperature). We also observed the ARP expression throughout the experimental evolution. Our results revealed quite complex patterns of life history in traits response to temperature. Mites developed faster and reached smaller sizes at increased temperature, but evolutionary responses to increased temperature were not always parallel to the observed phenotypic plasticity. Additionally, despite smaller body sizes, females laid larger eggs at higher temperature. This effect was more pronounced in animals evolving at elevated temperature. Evolution at increased temperature also affected ARP expression, with the proportion of armored fighters decreasing from generation to generation. We propose that this could be the consequence of temperature sensitivity of the cost-to-benefits ratio of expressing ARPs.
PLOS ONE | 2013
Agata Plesnar-Bielak; Anna M. Skrzynecka; Zofia M. Prokop; Michał Kolasa; Maciej Działo; Jacek Radwan
Sexual conflict leading to sexual antagonistic coevolution has been hypothesized to drive reproductive isolation in allopatric populations and hence lead to speciation. However, the generality of this speciation mechanism is under debate. We used experimental evolution in the bulb mite Rhizoglyphusrobini to investigate whether sexual conflict promotes reproductive isolation measured comprehensively to include all possible pre- and post-zygotic mechanisms. We established replicate populations in which we either enforced monogamy, and hence removed sexual conflict by making male and female evolutionary interests congruent, or allowed promiscuity. After 35 and 45 generations of experimental evolution, we found no evidence of reproductive isolation between the populations in any of the mating systems. Our results indicate that sexual conflict does not necessarily drive fast reproductive isolation and it may not be a ubiquitous mechanism leading to speciation.
Genome Biology and Evolution | 2016
Richa Joag; Michał Stuglik; Mateusz Konczal; Agata Plesnar-Bielak; Anna M. Skrzynecka; Wiesław Babik; Jacek Radwan
Intralocus sexual conflict (IASC) prevents males and females from reaching their disparate phenotypic optima and is widespread, but little is known about its genetic underpinnings. In Rhizoglyphus robini, a mite species with alternative male morphs, elevated sexual dimorphism of the armored fighter males (compared to more feminized scramblers males) was previously reported to be associated with increased IASC. Because IASC persists if gene expression patterns are correlated between sexes, we compared gene expression patterns of males and females from the replicate lines selected for increased proportion of fighter or scrambler males (F- and S-lines, respectively). Specifically, we tested the prediction that selection for fighter morph caused correlated changes in gene expression patterns in females. We identified 532 differentially expressed genes (FDR < 0.05) between the F-line and S-line males. Consistent with the prediction, expression levels of these genes also differed between females from respective lines. Thus, significant proportion of genes differentially expressed between sexually selected male phenotypes showed correlated expression levels in females, likely contributing to elevated IASC in F-lines reported in a previous study.
Journal of Evolutionary Biology | 2018
Anna Maria Skwierzyńska; Agata Plesnar-Bielak
Enzyme polymorphism in phosphogluconate dehydrogenase (Pgdh) is a striking example of single gene polymorphism involved in sexual conflict in bulb mite Rhizoglyphus robini. Males homozygous for the S Pgdh allele were shown to achieve higher reproductive success than FF homozygous males, while negatively influencing fecundity of their female partners. Here, we investigate proximate mechanisms responsible for the increased reproductive success of SS males and find that the S allele is associated with shorter time until copulation, higher copulation frequency and increased sperm production. We also show that Pgdh alleles are probably codominant, with SS males gaining the highest reproductive success, FF males – the lowest – and FS‐heterozygous males taking an intermediate position in all fitness parameters differentiating males of different genotypes. Additionally, we confirm the negative effect that S‐bearing males impose on the fecundity of females they mate with, showing a clear pattern of interlocus sexual conflict. We discuss that this effect is probably associated with increased copulation frequency. Whereas, contrary to what we have predicted, the S allele does not cause increased general male mobility, we speculate that the S allele‐bearing males are more efficient in forcing copulation and/or detecting females.
Evolution | 2018
Anna Maria Skwierzyńska; Jacek Radwan; Agata Plesnar-Bielak
Selection for secondary sexual trait (SST) elaboration may increase intralocus sexual conflict over the optimal values of traits expressed from shared genomes. This conflict can reduce female fitness, and the resulting gender load can be exacerbated by environmental stress, with consequences for a populations ability to adapt to novel environments. However, how the evolution of SSTs interacts with environment in determining female fitness is not well understood. Here, we investigated this question using replicate lines of bulb mites selected for increased or decreased prevalence of a male SST—thickened legs used as weapons. The fitness of females from these lines was measured at a temperature to which the mites were adapted (24°C), as well as at two novel temperatures: 18°C and 28°C. We found the prevalence of the SST interacted with temperature in determining female fecundity. At 28°C, females from populations with high SST prevalence were less fecund than females from populations in which the SST was rare, but the reverse was true at 18°C. Thus, a novel environment does not universally depress female fitness more in populations with a high degree of sexually selected dimorphism. We discuss possible consequences of the interaction we detected for adaptation to novel environments.
Evolutionary Biology-new York | 2017
Agata Plesnar-Bielak; Marta K. Labocha; Paulina Kosztyła; Katarzyna Woch; Weronika M. Banot; Karolina Sychta; Magdalena Skarboń; Monika A. Prus; Zofia M. Prokop
The maintenance of males and outcrossing is widespread, despite considerable costs of males. By enabling recombination between distinct genotypes, outcrossing may be advantageous during adaptation to novel environments and if so, it should be selected for under environmental challenge. However, a given environmental change may influence fitness of male, female, and hermaphrodite or asexual individuals differently, and hence the relationship between reproductive system and dynamics of adaptation to novel conditions may not be driven solely by the level of outcrossing and recombination. This has important implications for studies investigating the evolution of reproductive modes in the context of environmental changes, and for the extent to which their findings can be generalized. Here, we use Caenorhabditis elegans—a free-living nematode species in which hermaphrodites (capable of selfing but not cross-fertilizing each other) coexist with males (capable of fertilizing hermaphrodites)—to investigate the response of wild type as well as obligatorily outcrossing and obligatorily selfing lines to stressfully increased ambient temperature. We found that thermal stress affects fitness of outcrossers much more drastically than that of selfers. This shows that apart from the potential for recombination, the selective pressures imposed by the same environmental change can differ between populations expressing different reproductive systems and affect their adaptive potential.
Journal of Zoology | 2017
Agata Plesnar-Bielak; Katarzyna Woch; M. A. Małszycki; Ameer Alkhawlany; A. Hołysz; J. F Assis Correia; N. Turk; M. Ugrin; Paulina Kramarz; Zofia M. Prokop
BMC Evolutionary Biology | 2018
Agata Plesnar-Bielak; Anna Maria Skwierzyńska; Kasper Hlebowicz; Jacek Radwan