Jacek Radwan
Adam Mickiewicz University in Poznań
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacek Radwan.
Molecular Ecology Resources | 2014
Mateusz Konczal; Paweł Koteja; Michał Stuglik; Jacek Radwan; Wiesław Babik
For nonmodel organisms, genome‐wide information that describes functionally relevant variation may be obtained by RNA‐Seq following de novo transcriptome assembly. While sequencing has become relatively inexpensive, the preparation of a large number of sequencing libraries remains prohibitively expensive for population genetic analyses of nonmodel species. Pooling samples may be then an attractive alternative. To test whether pooled RNA‐Seq accurately predicts true allele frequencies, we analysed the liver transcriptomes of 10 bank voles. Each sample was sequenced both as an individually barcoded library and as a part of a pool. Equal amounts of total RNA from each vole were pooled prior to mRNA selection and library construction. Reads were mapped onto the de novo assembled reference transcriptome. High‐quality genotypes for individual voles, determined for 23 682 SNPs, provided information on ‘true’ allele frequencies; allele frequencies estimated from the pool were then compared with these values. ‘True’ frequencies and those estimated from the pool were highly correlated. Mean relative estimation error was 21% and did not depend on expression level. However, we also observed a minor effect of interindividual variation in gene expression and allele‐specific gene expression influencing allele frequency estimation accuracy. Moreover, we observed strong negative relationship between minor allele frequency and relative estimation error. Our results indicate that pooled RNA‐Seq exhibits accuracy comparable with pooled genome resequencing, but variation in expression level between individuals should be assessed and accounted for. This should help in taking account the difference in accuracy between conservatively expressed transcripts and these which are variable in expression level.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Jacek Radwan; Wiesław Babik
The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.
Proceedings of the Royal Society of London B: Biological Sciences | 2014
Maciej Jan Ejsmond; Jacek Radwan; Anthony B. Wilson
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamics incorporating both survival and reproduction, we demonstrate that natural and sexual selection produce distinctive signatures of MHC allelic diversity with critical implications for understanding host–pathogen dynamics. While natural selection produces the Red Queen dynamics characteristic of host–parasite interactions, disassortative mating stabilizes allele frequencies, damping major fluctuations in dominant alleles and protecting functional variants against drift. This subtle difference generates a complex interaction between MHC allelic diversity and population size. In small populations, the stabilizing effects of sexual selection moderate the effects of drift, whereas pathogen-mediated selection accelerates the loss of functionally important genetic diversity. Natural selection enhances MHC allelic variation in larger populations, with the highest levels of diversity generated by the combined action of pathogen-mediated selection and disassortative mating. MHC-based sexual selection may help to explain how functionally important genetic variation can be maintained in populations of conservation concern.
Molecular Ecology Resources | 2016
Alvaro Sebastian; Magdalena Herdegen; Magdalena Migalska; Jacek Radwan
Next‐generation sequencing (NGS) technologies are revolutionizing the fields of biology and medicine as powerful tools for amplicon sequencing (AS). Using combinations of primers and barcodes, it is possible to sequence targeted genomic regions with deep coverage for hundreds, even thousands, of individuals in a single experiment. This is extremely valuable for the genotyping of gene families in which locus‐specific primers are often difficult to design, such as the major histocompatibility complex (MHC). The utility of AS is, however, limited by the high intrinsic sequencing error rates of NGS technologies and other sources of error such as polymerase amplification or chimera formation. Correcting these errors requires extensive bioinformatic post‐processing of NGS data. Amplicon Sequence Assignment (amplisas) is a tool that performs analysis of AS results in a simple and efficient way, while offering customization options for advanced users. amplisas is designed as a three‐step pipeline consisting of (i) read demultiplexing, (ii) unique sequence clustering and (iii) erroneous sequence filtering. Allele sequences and frequencies are retrieved in excel spreadsheet format, making them easy to interpret. amplisas performance has been successfully benchmarked against previously published genotyped MHC data sets obtained with various NGS technologies.
Journal of Evolutionary Biology | 2014
Magdalena Herdegen; Wiesław Babik; Jacek Radwan
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre‐eminent system for the study of selective pressures that arise from host–pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population‐genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.
Molecular Biology and Evolution | 2015
Mateusz Konczal; Wiesław Babik; Jacek Radwan; Edyta T. Sadowska; Paweł Koteja
Experimental evolution combined with genome or transcriptome resequencing (Evolve and Resequence) represents a promising approach for advancing our understanding of the genetic basis of adaptation. Here, we applied this strategy to investigate the effect of selection on a complex trait in lines derived from a natural population of a small mammal. We analyzed the liver and heart transcriptomes of bank voles (Myodes [=Clethrionomys] glareolus) that had been selected for increased aerobic metabolism. The organs were sampled from 13th generation voles; at that point, the voles from four replicate selected lines had 48% higher maximum rates of oxygen consumption than those from four control lines. At the molecular level, the response to selection was primarily observed in gene expression: Over 300 genes were found to be differentially expressed between the selected and control lines and the transcriptome-wide pattern of expression distinguished selected lines from controls. No evidence for selection-driven changes of allele frequencies at coding sites was found: No single nucleotide polymorphism (SNP) changed frequency more than expected under drift alone and frequency changes aggregated over all SNPs did not separate selected and control lines. Nevertheless, among genes which showed highest differentiation in allele frequencies between selected and control lines we identified, using information about gene functions and the biology of the selected phenotype, plausible targets of selection; these genes, together with those identified in expression analysis, have been prioritized for further studies. Because our selection lines were derived from a natural population, the amount and the spectrum of variation available for selection probably closely approximated that typically found in populations of small mammals. Therefore, our results are relevant to the understanding of the molecular basis of complex adaptations occurring in natural vertebrate populations.
Evolution | 2014
Agata Plesnar Bielak; Anna M. Skrzynecka; Krzysztof Miler; Jacek Radwan
Intralocus sexual conflict (IASC) arises when fitness optima for a shared trait differ between the sexes; such conflict may help maintain genetic variation within populations. Sex‐limited expression of sexually antagonistic traits may help resolve the conflict, but the extent of this resolution remains a subject of debate. In species with alternative male reproductive tactics, unresolved conflict should manifest more in a more sexually dimorphic male phenotype. We tested this prediction in the bulb mite (Rhizoglyphus robini), a species in which aggressive fighters coexist with benign scramblers. To do this, we established replicated lines in which we increased the proportion of each of the alternative male morphs using artificial selection. After approximately 40 generations, the proportion of fighters and scramblers stabilized at >0.9 in fighter‐ and scrambler‐selected lines, respectively. We then measured several female fitness components. As predicted by IASC theory, female fecundity and longevity were lower in lines selected for fighters and higher in lines selected for scramblers. This finding indicates that sexually selected phenotypes are associated with an ontogenetic conflict that is not easily resolved. Furthermore, we suggest that IASC may be an important mechanism contributing to the maintenance of genetic variation in the expression of alternative reproductive tactics.
PLOS Computational Biology | 2015
Maciej Jan Ejsmond; Jacek Radwan
Major Histocompatibility Complex (MHC) genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens) of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS) are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process). Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.
Evolutionary Biology-new York | 2016
Jacek Radwan; Leif Engqvist; Klaus Reinhold
Maintenance of genetic variance in secondary sexual traits, including bizarre ornaments and elaborated courtship displays, is a central problem of sexual selection theory. Despite theoretical arguments predicting that strong sexual selection leads to a depletion of additive genetic variance, traits associated with mating success show relatively high heritability. Here we argue that because of trade-offs associated with the production of costly epigamic traits, sexual selection is likely to lead to an increase, rather than a depletion, of genetic variance in those traits. Such trade-offs can also be expected to contribute to the maintenance of genetic variation in ecologically relevant traits with important implications for evolutionary processes, e.g. adaptation to novel environments or ecological speciation. However, if trade-offs are an important source of genetic variation in sexual traits, the magnitude of genetic variation may have little relevance for the possible genetic benefits of mate choice.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Karl P. Phillips; Joanne Cable; Ryan S. Mohammed; Magdalena Herdegen-Radwan; Jarosław Raubic; Karolina J. Przesmycka; Cock van Oosterhout; Jacek Radwan
Significance The major histocompatibility complex (MHC) is one of the most polymorphic gene families in the vertebrate genome, with natural selection actively promoting and maintaining variability. The exact mechanism/mechanisms responsible for these characteristics remain unclear, but identifying them is fundamental to our understanding of host–pathogen dynamics. Using targeted crosses of the model Trinidadian guppy, a tractable parasite, and exposure-controlled infection trials, we show that novel MHC variants are associated with less severe infections. Uniquely, our experimental design separates novel variant advantage from other modes of selection and confounding variables, such as individual MHC variability and genomic background. We thus demonstrate a fundamental process driving evolution of the vertebrate immune system, which helps explain the unique features of MHC genes. The major histocompatibility complex (MHC) is crucial to the adaptive immune response of vertebrates and is among the most polymorphic gene families known. Its high diversity is usually attributed to selection imposed by fast-evolving pathogens. Pathogens are thought to evolve to escape recognition by common immune alleles, and, hence, novel MHC alleles, introduced through mutation, recombination, or gene flow, are predicted to give hosts superior resistance. Although this theoretical prediction underpins host–pathogen “Red Queen” coevolution, it has not been demonstrated in the context of natural MHC diversity. Here, we experimentally tested whether novel MHC variants (both alleles and functional “supertypes”) increased resistance of guppies (Poecilia reticulata) to a common ectoparasite (Gyrodactylus turnbulli). We used exposure-controlled infection trials with wild-sourced parasites, and Gyrodactylus-naïve host fish that were F2 descendants of crossed wild populations. Hosts carrying MHC variants (alleles or supertypes) that were new to a given parasite population experienced a 35–37% reduction in infection intensity, but the number of MHC variants carried by an individual, analogous to heterozygosity in single-locus systems, was not a significant predictor. Our results provide direct evidence of novel MHC variant advantage, confirming a fundamental mechanism underpinning the exceptional polymorphism of this gene family and highlighting the role of immunogenetic novelty in host–pathogen coevolution.