Agnes Fekete
University of Debrecen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnes Fekete.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Philippe Schmitt-Kopplin; Zelimir Gabelica; Régis D. Gougeon; Agnes Fekete; Basem Kanawati; Mourad Harir; Istvan Gebefuegi; Gerhard Eckel; Norbert Hertkorn
Numerous descriptions of organic molecules present in the Murchison meteorite have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, all molecular analyses were so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a nontargeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of Murchison extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. This molecular complexity, which provides hints on heteroatoms chronological assembly, suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological- and biogeochemical-driven chemical space.
PLOS ONE | 2010
Marianna Lucio; Agnes Fekete; Cora Weigert; Brigitte Wägele; Xinjie Zhao; Jing Chen; Andreas Fritsche; Hans-Ulrich Häring; Erwin Schleicher; Guowang Xu; Philippe Schmitt-Kopplin; Rainer Lehmann
Background A decline in body insulin sensitivity in apparently healthy individuals indicates a high risk to develop type 2 diabetes. Investigating the metabolic fingerprints of individuals with different whole body insulin sensitivity according to the formula of Matsuda, et al. (ISIMatsuda) by a non-targeted metabolomics approach we aimed a) to figure out an unsuspicious and altered metabolic pattern, b) to estimate a threshold related to these changes based on the ISI, and c) to identify the metabolic pathways responsible for the discrimination of the two patterns. Methodology and Principal Findings By applying infusion ion cyclotron resonance Fourier transform mass spectrometry, we analyzed plasma of 46 non-diabetic subjects exhibiting high to low insulin sensitivities. The orthogonal partial least square model revealed a cluster of 28 individuals with alterations in their metabolic fingerprints associated with a decline in insulin sensitivity. This group could be separated from 18 subjects with an unsuspicious metabolite pattern. The orthogonal signal correction score scatter plot suggests a threshold of an ISIMatsuda of 15 for the discrimination of these two groups. Of note, a potential subgroup represented by eight individuals (ISIMatsuda value between 8.5 and 15) was identified in different models. This subgroup may indicate a metabolic transition state, since it is already located within the cluster of individuals with declined insulin sensitivity but the metabolic fingerprints still show some similarities with unaffected individuals (ISI >15). Moreover, the highest number of metabolite intensity differences between unsuspicious and altered metabolic fingerprints was detected in lipid metabolic pathways (arachidonic acid metabolism, metabolism of essential fatty acids and biosynthesis of unsaturated fatty acids), steroid hormone biosyntheses and bile acid metabolism, based on data evaluation using the metabolic annotation interface MassTRIX. Conclusions Our results suggest that altered metabolite patterns that reflect changes in insulin sensitivity respectively the ISIMatsuda are dominated by lipid-related pathways. Furthermore, a metabolic transition state reflected by heterogeneous metabolite fingerprints may precede severe alterations of metabolism. Our findings offer future prospects for novel insights in the pathogenesis of the pre-diabetic phase.
The Journal of Allergy and Clinical Immunology | 2011
Stefanie Gilles; Agnes Fekete; Xin Zhang; Isabelle Beck; Cornelia Blume; Johannes Ring; Carsten B. Schmidt-Weber; Heidrun Behrendt; Philippe Schmitt-Kopplin; Claudia Traidl-Hoffmann
BACKGROUNDnWater-soluble components from pollen modulate dendritic cell (DC) functions, such as IL-12 secretion and 3-5-cyclic adenosine monophosphate (cAMP) signaling and migration, possibly contributing to the establishment of a T(H)2-dominated immune response against pollen. Because these effects could not solely be attributed to the previously identified pollen-associated lipid mediators, the pollen metabolome was analyzed for candidate immunomodulatory substances.nnnOBJECTIVEnWe sought to perform an analysis of the effect of pollen-associated adenosine on DC function and T(H) cell differentiation.nnnMETHODSnFractions of aqueous pollen extracts (APEs) were generated by means of ultrafiltration and were subjected simultaneously to biological tests and metabolome analysis (ultra-high-resolution mass spectrometry) and ultraperformance liquid chromatography. Effects of pollen-derived adenosine on monocyte-derived DC cAMP signaling, cytokine response, and capacity to differentiate T(H) cells were studied.nnnRESULTSnThe less than 3-kd fraction of APEs comprised thousands of substances, including adenosine in micromolar concentrations. Pollen-derived adenosine mediated A₂ receptor-dependent induction of cAMP and inhibition of IL-12p70 in DCs. APEs digested with adenosine deaminase failed to mediate IL-12 inhibition. DCs of nonatopic donors exposed to APEs showed an adenosine-dependent reduced capacity to differentiate T(H)1 cells and an enhanced capacity to induce regulatory T cells and IL-10. DCs of atopic donors failed to induce IL-10 but instead induced IL-5 and IL-13.nnnCONCLUSIONnThis study identifies adenosine out of thousands of metabolites as a potent immunoregulatory substance in pollen. It acts on the level of the DC, with differential effects in atopic and nonatopic donors.
PLOS ONE | 2012
Claudia Anetzberger; Matthias Reiger; Agnes Fekete; Ursula Schell; Nina Stambrau; Laure Plener; Joachim Kopka; Phillippe Schmitt-Kopplin; Hubert Hilbi; Kirsten Jung
Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.
Acta Ophthalmologica | 2011
Gergely Losonczy; Agnes Fekete; Zoltán Vokó; Lili Takács; Ildikó Káldi; Éva Ajzner; Márta Kasza; Attila Vajas; András Berta; Istvan Balogh
Purpose:u2002 Recent studies strongly support the role of genetic factors in the aetiology of age‐related macular degeneration (AMD). We investigated the frequency of Tyr402His polymorphism of the complement factor H (CFH) gene, Ser69Ala polymorphism at LOC387715, rs11200638 polymorphism of the HTRA1 gene and different apolipoprotein E (ApoE) alleles in Hungarian patients with AMD in order to determine the disease risk conferred by these factors.
PLOS ONE | 2011
Mathieu Schué; Agnes Fekete; Philippe Ortet; Catherine Brutesco; Thierry Heulin; Philippe Schmitt-Kopplin; Wafa Achouak; Catherine Santaella
Heavy metals such as cadmium (Cd2+) affect microbial metabolic processes. Consequently, bacteria adapt by adjusting their cellular machinery. We have investigated the dose-dependent growth effects of Cd2+ on Rhizobium alamii, an exopolysaccharide (EPS)-producing bacterium that forms a biofilm on plant roots. Adsorption isotherms show that the EPS of R. alamii binds cadmium in competition with calcium. A metabonomics approach based on ion cyclotron resonance Fourier transform mass spectrometry has showed that cadmium alters mainly the bacterial metabolism in pathways implying sugars, purine, phosphate, calcium signalling and cell respiration. We determined the influence of EPS on the bacterium response to cadmium, using a mutant of R. alamii impaired in EPS production (MSΔGT). Cadmium dose-dependent effects on the bacterial growth were not significantly different between the R. alamii wild type (wt) and MSΔGT strains. Although cadmium did not modify the quantity of EPS isolated from R. alamii, it triggered the formation of biofilm vs planktonic cells, both by R. alamii wt and by MSΔGT. Thus, it appears that cadmium toxicity could be managed by switching to a biofilm way of life, rather than producing EPS. We conclude that modulations of the bacterial metabolism and switching to biofilms prevails in the adaptation of R. alamii to cadmium. These results are original with regard to the conventional role attributed to EPS in a biofilm matrix, and the bacterial response to cadmium.
Frontiers in Plant Science | 2015
Christine Götz-Rösch; Tina Sieper; Agnes Fekete; Philippe Schmitt-Kopplin; Anton Hartmann; Peter Schröder
Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound.
PLOS ONE | 2012
Gergely Losonczy; Attila Vajas; Lili Takács; Erika Dzsudzsák; Agnes Fekete; Éva Márhoffer; László Kardos; Éva Ajzner; Begoña Hurtado; Pablo García de Frutos; András Berta; Istvan Balogh
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in the developed world. Numerous genetic factors contribute to the development of the multifactorial disease. We performed a case-control study to assess the risk conferred by known and candidate genetic polymorphisms on the development of AMD. We searched for genetic interactions and for differences in dry and wet AMD etiology. We enrolled 213 patients with exudative, 67 patients with dry AMD and 106 age and ethnically matched controls. Altogether 12 polymorphisms in Apolipoprotein E, complement factor H, complement factor I, complement component 3, blood coagulation factor XIII, HTRA1, LOC387715, Gas6 and MerTK genes were tested. No association was found between either the exudative or the dry form and the polymorphisms in the Apolipoprotein E, complement factor I, FXIII and MerTK genes. Gas6 c.834+7G>A polymorphism was found to be significantly protective irrespective of other genotypes, reducing the odds of wet type AMD by a half (ORu200a=u200a0.50, 95%CI: 0.26–0.97, pu200a=u200a0.04). Multiple regression models revealed an interesting genetic interaction in the dry AMD subgroup. In the absence of C3 risk allele, mutant genotypes of both CFH and HTRA1 behaved as strongly significant risk factors (ORu200a=u200a7.96, 95%CI: 2.39u200a=u200a26.50, pu200a=u200a0.0007, and ORu200a=u200a36.02, 95%CI: 3.30–393.02, pu200a=u200a0.0033, respectively), but reduced to neutrality otherwise. The risk allele of C3 was observed to carry a significant risk in the simultaneous absence of homozygous CFH and HTRA1 polymorphisms only, in which case it was associated with a near-five-fold relative increase in the odds of dry type AMD (ORu200a=u200a4.93, 95%CI: 1.98–12.25, pu200a=u200a0.0006). Our results suggest a protective role of Gas6 c.834+7G>A polymorphism in exudative AMD development. In addition, novel genetic interactions were revealed between CFH, HTRA1 and C3 polymorphisms that might contribute to the pathogenesis of dry AMD.
Archive | 2008
Philippe Schmitt-Kopplin; Agnes Fekete
Over the last two decades, the development of capillary electrophoresis (CE) instruments has lead to systems with programmable samplers, separation columns, separation buffers, and detection devices comparable visually in many aspects to the setup of classical chromatography. Two characteristics make CE essentially different from chromatography and are the basis of the CE way of thinking: first is the injection type and the liquid flow within the capillary. When the injection is made hydrodynamically (such as in most of the applications found in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. The second characteristic is that in CE, buffer velocity is not pressure-driven, as in liquid chromatography, but is electrokinetically governed by the quality of the capillary surface (separation buffer dependent surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is that the migration time of the analytes apparently nonreproducible, although the velocity of the ions is the same. The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired time-scale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size; see Chapter 23).
Methods of Molecular Biology | 2016
Philippe Schmitt-Kopplin; Agnes Fekete
Over the last two decades the development of capillary electrophoresis instruments lead to systems with programmable sampler, separation column, separation buffer, and detection devices comparable visually in many aspects to the setup of classical chromatography.Two processes make capillary electrophoresis essentially different from chromatography and are the basis of the CE-way of thinking, namely, the injection type and the liquid flow within the capillary. (1) When the injection is made hydrodynamically (such as in most of the found applications in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. (2) The buffer velocity is not pressure driven as in liquid chromatography but electrokinetically governed by the quality of the capillary surface (separation buffer dependant surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is an apparent nonreproducible migration time of the analytes, even though the own velocity of the ions is the same.The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired timescale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size-see chapter on semiempirical modelization).