Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnès Feurtet-Mazel is active.

Publication


Featured researches published by Agnès Feurtet-Mazel.


Water Research | 2002

Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers

Caroline Gold; Agnès Feurtet-Mazel; Michel Coste; Alain Boudou

Short-term effects of metal pollution were assessed by transferring periphytic diatom communities developed on artificial substrates from a reference site to a site polluted by heavy metals (around 15 microg Cd L(-1) and 800 microg Zn L(-1)), located in neighbouring streams. Metal sensitivity of mature assemblages (aged 1 month) was evaluated by studying changes in diatom density and taxonomic composition 2 and 4 weeks after the transfer. Resident communities of both sites were simultaneously collected on similar artificial substrates, in order to compare short-term effects of metals within transferred communities with long-term effects observed at the polluted site. Field transfer induced a marked shift of community structure towards that of the resident community of the polluted site: diatom density rapidly decreased after the transfer, from 35,000+/-4000 to 15,000+/-300 cells cm(-2) after 2 weeks, and taxonomic composition changed. Relative abundances of species characteristic of the reference site rapidly decreased, e.g. Nitzschia dissipata and Gomphoneis minuta, whereas species characteristic of the polluted site progressively increased within transferred communities, e.g. Gomphonema parvulum, Pinnularia sp. or Fragilaria crotonensis. The structure of periphytic diatom communities could therefore be an indicator of metal pollution, with marked taxonomic changes being identified within reference assemblages after only 2 weeks under relatively low metal exposure.


Environmental Pollution | 1996

Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms

F. Pérès; D. Florin; T. Grollier; Agnès Feurtet-Mazel; M. Coste; Francis Ribeyre; M. Ricard; Alain Boudou

The toxic effects of the phenylurea herbicide Isoproturon -IPU: (3-(4-isopropylphenyl)-1, 1-dimethylurea)-were studied on the colonization of periphytic diatom communities, within indoor microcosms consisting of a mixed biotope (water column and natural sediment) and two biological species-rooted macrophyte cuttings (Elodea densa) and benthic bivalve molluscs (Corbicula fluminea). The periphyton, essentially composed of diatoms, was collected on artificial substrata (glass slides) in the upper layers of the water column, after two periods of exposure (34 and 71 days). IPU was initially added in the water or in the sediment compartment, at two nominal concentrations (L1 and L2 levels) for each contamination source-5 and 20 microg litre(-1) and 100 and 400 microg kg(-1) in sediment (w/w) respectively. The effects of IPU on the density and community structure of periphytic diatoms are described. A marked reduction in the diatom density was observed after 34 days exposure to the lower concentration of IPU in the water (5 microg litre(-1)). For the L2 levels, the very small number of live cells present did not permit quantification of the diatom density. After 71 days, recovery in community parameters occurred for the two contamination levels of the sediment and water column sources. Samples collected in the experimental units contaminated with the L2 levels were dominated by heterotrophic and smaller diatom species, such as Sellaphora seminulum. Data treatment based on factorial discriminant analysis enabled us to distinguish the different contamination conditions, with only 11 species from the 130 taxa identified.


Science of The Total Environment | 2010

Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity.

Thi Thuy Duong; Soizic Morin; Michel Coste; Olivier Herlory; Agnès Feurtet-Mazel; Alain Boudou

A study was undertaken to examine cadmium accumulation in freshwater biofilm, its effects on biofilm development and on diatom community structure in laboratory experimental conditions. A suspension of a biofilm originated from the Riou-Mort River (South West France) was inoculated into three experimental units containing clean glass substrates under laboratory conditions. Settling and already developed biofilms were exposed to a Cd concentration of 100 microg L(-1). Metal accumulation (total and intracellular metal content) in biofilms, dry weight and ash-free dry mass, diatom cell density and diatom community composition were analyzed. Both total and intracellular Cd accumulated by the biofilm throughout the experiment increased with duration of metal exposure. Biofilms in the course of maturation were showed higher Cd content and less effective development than settled biofilms. However diatom communities in younger biofilms exposed to Cd increased their tolerance to Cd by a highly significant development of Nitzschia palea. In contrast, Cd exposure had different effect in installed biofilm and taxonomic composition. These results indicate that mature biofilm may limit Cd accumulation into its architecture and protect diatom communities from the effects of metals.


Aquatic Toxicology | 2008

Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms.

Thi Thuy Duong; Soizic Morin; Olivier Herlory; Agnès Feurtet-Mazel; Michel Coste; Alain Boudou

The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems.


Archive | 2012

Consistency in Diatom Response to Metal-Contaminated Environments

Soizic Morin; Arielle Cordonier; Isabelle Lavoie; Adeline Arini; Saúl Blanco; Thi Thuy Duong; Elisabet Tornés; Berta Bonet; Natàlia Corcoll; Leslie Faggiano; Martin Laviale; Florence Pérès; Eloy Bécares; Michel Coste; Agnès Feurtet-Mazel; Claude Fortin; Helena Guasch; Sergi Sabater

Diatoms play a key role in the functioning of streams, and their sensitivity to many environmental factors has led to the development of numerous diatom-based indices used in water quality assessment. Although diatom-based monitoring of metal contamination is not currently included in water quality monitoring programs, the effects of metals on diatom communities have been studied in many polluted watersheds as well as in laboratory experiments, underlying their high potential for metal contamination assessment. Here, we review the response of diatoms to metal pollution from individual level (e.g. size, growth form, and morphological abnormalities) to community structure (replacement of sensitive species by tolerant ones). These potential effects are then tested using a large, multi-country database combining diatom and metal information. Metal contamination proved to be a strong driver of the community structure, and enabled for the identification of tolerant species like Cocconeis placentula var. euglypta, Eolimna minima, Fragilaria gracilis, Nitzschia sociabilis, Pinnularia parvulissima, and Surirella angusta. Among the traits tested, diatom cell size and the occurrence of diatom deformities were found to be good indicators of high metal contamination. This work provides a basis for further use of diatoms as indicators of metal pollution.


Science of The Total Environment | 2012

Remediation of a watershed contaminated by heavy metals: a 2-year field biomonitoring of periphytic biofilms.

Adeline Arini; Agnès Feurtet-Mazel; Soizic Morin; Régine Maury-Brachet; Michel Coste; François Delmas

This study focuses on an industrial contamination site subjected to remediation processes since 2007 in the Riou-Mort watershed (southwest France). The purpose was to assess the first impacts of remediation on periphytic biofilms, and was performed during two years of biomonitoring. Periphytic biofilms were collected on glass slides immersed 24 days at different sites along the contamination gradient for 12 colonisation cycles. Metal contaminations (Cd and Zn) were analysed in biofilms and the evolution of diatom communities was assessed, integrating teratology quantifications. Despite remediation work initiated at the industrial site, this study demonstrated the persistence of metal contamination in water, as well as in biofilms. In addition, our data, showed that the remediation process was initially marked by an increase in metal contamination in the river, with increasing diatom community shifts. Metal-contaminated biofilms presented decreasing species diversities and were dominated by metal-resistant species such as Eolimna minima, whom abundances increased in 2010 reaching 57.2±10%. No significant decrease in metal accumulation was observed and total Cd content in biofilms collected downstream the industrial site ranged from 772.7±88 in July 2009 to 636.9±20 μg/gDW in July 2010. Results obtained on artificial substrates were compared with those of natural substrates and showed similar diatom communities and abundances of deformed diatoms but lower diversities. This ensured that glass slide subtrates gave a good representation of periphytic biofilm health. Finally, results were compared to studies performed before the remediation process and this did not reveal a decrease of metal accumulation in biofilms nor shifts in taxonomic composition of the communities, rather the remaining dominance of metal resistant species such as E. minima was confirmed.


Chemosphere | 1996

Experimental study of bioaccumulation and effects of the herbicide isoproturon on freshwater rooted macrophytes (Elodea densa and Ludwigia natans)

Agnès Feurtet-Mazel; T. Grollier; M. Grouselle; Francis Ribeyre; Alain Boudou

Abstract Bioaccumulation and effects of the herbicide Isoproturon (IPU) on two freshwater rooted macrophytes Elodea densa and Ludwigia natans were studied after direct exposure via the water column in indoor microcosms. Three complementary experiments were set up, based on two [IPU] ranges (0–1000 and 0–100 μg.L−1 - 6 points/range) and on a chronological approach (1.5, 4, 9 and 21 days). The results showed a significant growth inhibition of the E. densa cuttings for an [IPU] close to 10 μg.L−1 Oxygen concentrations in the medium were weakly but significantly reduced after 24 h exposure to 2 μg.L−1 IPU bioaccumulation revealed a clear saturation process in the low range of [IPU] in the water, with maximal BCF values close to 60 at 2 μg.L−1.


Water Research | 2012

Development of q-PCR approaches to assess water quality: Effects of cadmium on gene expression of the diatom Eolimna minima

Sandra Kim Tiam; Agnès Feurtet-Mazel; François Delmas; Nicolas Mazzella; Soizic Morin; Guillemine Daffe; Patrice Gonzalez

This study was undertaken to develop molecular tools to assess water quality using diatoms as the biological model. Molecular approaches were designed following the development of a rapid and easy RNA extraction method suited to diatoms and the sequencing of genes involved in mitochondrial and photosystem metabolism. Secondly the impact of cadmium was evaluated at the genetic level by q-PCR on 9 genes of interest after exposure of Eolimna minima diatom populations cultured in suspension under controlled laboratory conditions. Their growth kinetics and Cd bioaccumulation were followed. Population growth rates revealed the high impact of Cd at 100 μg/L with total inhibition of growth. These results are linked to the high bioaccumulation values calculated after 14 days of exposure, 57.0±6.3 μg Cd/g dw and 734.1±70 μg Cd/g dw for exposures of 10 and 100 μg Cd/L respectively. Genetic responses revealed the impact of Cd on the mitochondrial metabolism and the chloroplast photosystem of E. minima exposed to 10 and 100 μg Cd/L with induction of cox1, 12S, d1 and psaA after 7 days of exposure for the concentration of 100 μg Cd/L and of nad5, d1 and psaA after 14 days of exposure for both conditions. This is the first reported use of q-PCR for the assessment of toxic pollution on benthic river diatoms. The results obtained presage interesting perspectives, but the techniques developed need to be optimized before the design of new water quality diagnosis tools for use on natural biofilms.


Environmental Science and Pollution Research | 2016

Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms

Agnès Feurtet-Mazel; Stéphane Mornet; Laetitia Charron; Nathalie Mesmer-Dudons; Régine Maury-Brachet; Magalie Baudrimont

Testing biotransformation capacities of living aquatic microalgae diatoms to naturally synthetize gold nanoparticles (AuNP) from gold salts and assessing aftereffects on their viability by microscope observations is a great challenge. In this work, a laboratory experiment was conducted, which aimed to observe (i) directly by transmission electronic and light microscopy and (ii) through indirect measurements (UV-visible spectroscopy) the periphytic freshwater diatom Eolimna minima exposed to gold salts. This work revealed the capacity of E. minima to intracellularly biosynthetize AuNP and to tolerate it. AuNP synthesis appears as a mechanism of detoxification to protect diatom from gold salt contamination. We also pointed out the risks associated with the spread of diatoms full of AuNP, through the trophic web of freshwater ecosystems. The preponderant part of the diatoms in natural biofilms associated with their position at the basis of the trophic webs in rivers could then make them responsible for the contamination of their consumers (grazer animals) and consequently for the potential release of AuNP through the entire food web.


Environmental Pollution | 2014

Detoxification and recovery capacities of Corbicula fluminea after an industrial metal contamination (Cd and Zn): A one-year depuration experiment

Adeline Arini; Guillemine Daffe; Patrice Gonzalez; Agnès Feurtet-Mazel; Magalie Baudrimont

This study aimed to assess the recovery capacity of the freshwater bivalve Corbicula fluminea subjected to industrial metal discharges (Cd, Zn). After a 24-day exposure in a metal-contaminated river, bivalves were transferred and maintained in the laboratory for one year under metal-free conditions. Metal accumulation, metallothionein production and genetic expressions of genes involved in metal stress were studied. Results demonstrated the high persistence of Cd in tissues (only 73% eliminated after 365 days) whereas Zn was rapidly depurated. The Cd half-life was estimated around 240 days. Metallothioneins were strongly induced within the 28 first days of decontamination, then decreased by 45% after 365 days. The metal exposure of bivalves led to a significant gene induction. After 28 days, most of the genes were no longer overexpressed, suggesting that the bivalves may withstand small amounts of non-essential metals in their tissues without showing signs of detrimental effects on the tested genes.

Collaboration


Dive into the Agnès Feurtet-Mazel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thi Thuy Duong

Vietnam Academy of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magalie Baudrimont

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge