Agnes Kütt
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnes Kütt.
Journal of Organic Chemistry | 2011
Agnes Kütt; Toomas Rodima; Jaan Saame; Elin Raamat; Vahur Mäemets; Ivari Kaljurand; Ilmar A. Koppel; Romute Yu. Garlyauskayte; Yurii L. Yagupolskii; Lev M. Yagupolskii; Eduard Bernhardt; Helge Willner; Ivo Leito
In this paper, we report the most comprehensive equilibrium superacidity scale that is available to date. Contrary to most of the past works, this scale is set up in a medium of constant composition and the obtained acidity values characterize the acidities of molecules rather than acidities of media. The current scale is thus complementary to the well-known H(0) scale in the information that it provides. The solvent used is 1,2-dichloroethane (DCE). DCE has very weak basic properties (but sufficiently high polarity) and is an appropriate solvent for measuring acidities of very strong acids of diverse chemical nature. DCE acidities of well-known superacids (CF(3)SO(2)OH, (CF(3)SO(2))(2)NH, cyanocarbon acids, etc.) as well as common mineral acids (H(2)SO(4), HI, HBr, etc.) are reported. Acidities of altogether 62 acids have been determined from 176 interlinked relative acidity measurements. The scale spans 15 orders of magnitude (from picric acid to 1,1,2,3,3-pentacyanopropene) and is expected to be a useful tool in design, use, and further acidity measurements of superacidic molecules.
Journal of Computational Chemistry | 2009
Frank Eckert; Ivo Leito; Ivari Kaljurand; Agnes Kütt; Andreas Klamt; Michael Diedenhofen
The COSMO‐RS method, a combination of the quantum chemical dielectric continuum solvation model COSMO with a statistical thermodynamics treatment for realistic solvation simulations, has been used for the prediction of pKa values in acetonitrile. For a variety of 93 organic acids, the directly calculated values of the free energies of dissociation in acetonitrile showed a very good correlation with the pKa values (r2 = 0.97) in acetonitrile, corresponding to a standard deviation of 1.38 pKa units. Thus, we have a prediction method for acetonitrile pKa with the intercept and the slope as the only adjusted parameters. Furthermore, the pKa values of CH acids yielding large anions with delocalized charge can be predicted with a rmse of 1.12 pKa units using the theoretical values of slope and intercept resulting in truly ab initio pKa prediction. In contrast to our previous findings on aqueous acidity predictions the slope of the experimental pKa versus theoretical ΔGdiss was found to match the theoretical value 1/RT ln (10) very well. The predictivity of the presented method is general and is not restricted to certain compound classes. However, a systematic correction of −7.5 kcal mol−1 is required for compounds that do not allow electron‐delocalization in the dissociated anion. The prediction model was tested on a diverse test set of 129 complex multifunctional compounds from various sources, reaching a root mean square deviation of 2.10 pKa units.
Journal of Organic Chemistry | 2008
Agnes Kütt; Valeria Movchun; Toomas Rodima; Timo Dansauer; Eduard B. Rusanov; Ivo Leito; Ivari Kaljurand; Juta Koppel; Viljar Pihl; Ivar Koppel; Gea Ovsjannikov; Lauri Toom; Masaaki Mishima; Maurice Medebielle; Enno Lork; Gerd-Volker Röschenthaler; Ilmar A. Koppel, ,† and; Alexander A. Kolomeitsev
A general route to functionalized pentakis(trifluoromethyl)phenyl (C6(CF3)5) derivatives, promising building blocks for designing novel stable carbenes, radical species, superacids, weakly coordinating anions and other practically and theoretically useful species, is presented. This pertrifluoromethylation route proceeds via conveniently pregenerated (trifluoromethyl)copper (CF3Cu) species in DMF, stabilized by addition of 1,3-dimethyl-2-imidazolidinone (DMI). These species react with hexaiodobenzene at ambient temperature to give the potassium pentakis(trifluoromethyl)phenoxide along with hexakis(trifluoromethyl)benzene and pentakis(trifluoromethyl)benzene in a combined yield of 80%. A possible reaction pathway explaining the formation of pentakis(trifluoromethyl)phenoxide is proposed. Pentakis(trifluoromethyl)phenol gives rise to easily functionalized pentakis(trifluoromethyl)chlorobenzene and pentakis(trifluoromethyl)aniline. Pertrifluoromethylation of pentaiodochlorobenzene and pentaiodotoluene allows straightforward access to pentakis(trifluoromethyl)chlorobenzene and pentakis(trifluoromethyl)toluene, respectively. XRD structures of several C6(CF3)5 derivatives were determined and compared with the calculated structures. Due to the steric crowding the aromatic rings in all C6(CF3)5 derivatives are significantly distorted. The gas-phase acidities (Delta Gacid) and pKa values in different solvents (acetonitrile (AN), DMSO, water) for the title compounds and a number of related compounds have been measured. The origin of the acidifying effect of the C6(CF3)5 group has been explored using the isodesmic reactions approach.
Journal of Physical Chemistry A | 2009
Ivo Leito; Elin Raamat; Agnes Kütt; Jaan Saame; Karin Kipper; Ilmar A. Koppel; Ivar Koppel; Min Zhang; Masaaki Mishima; Lev M. Yagupolskii; Romute Yu. Garlyauskayte; Andrey Anatolievich Filatov
The gas-phase acidity (GA) scale from (CF(3)CO)(2)NH to (C(2)F(5)SO(2))(2)NH--about a 24 kcal mol(-1) range of gas-phase acidities--was reexamined using the Fourier transform ion cyclotron resonance equilibrium measurement approach. Some additions and modifications to the standard methodology of GA measurements were introduced (estimation of partial pressures from mass spectra of the compounds, instead of the pressure gauge readings and use of long reaction times) to achieve higher reliability. Gas-phase acidities of 18 compounds were determined for the first time. The results reveal a contraction of the previously published values in this part of the scale. In particular, the GA values of (CF(3)SO(2))(2)NH and (C(2)F(5)SO(2))(2)NH (important components of lithium ion battery electrolytes and ionic liquids) were revised toward stronger acidities from 291.8 kcal mol(-1) to 286.5 kcal mol(-1) and from 289.4 kcal mol(-1) to 283.7 kcal mol(-1) (i.e., by 5.3 and 5.7 kcal mol(-1)), respectively. Experimental and computational evidence is presented in support of the current results.
Organic and Biomolecular Chemistry | 2006
Lilli Sooväli; Toomas Rodima; Ivari Kaljurand; Agnes Kütt; Ilmar A. Koppel; Ivo Leito
The pKa values in water and in dilute surfactant solution for 15 ring-substituted phenyl P1 pyrrolidino phosphazenes PhN=P(NC4H8)3 and the phenyl P1 dimethylamino phosphazene PhN=P(NMe2)3 previously studied in acetonitrile (AN) and tetrahydrofuran (THF) are reported. The nonionic surfactant Tween 20 was used for the basicity measurements of some compounds to overcome the solubility problems. Measurements with a control group of phosphazenes in both media were used to validate the use of the obtained pKa values as estimates of aqueous values. The pK(a) values of the studied phosphazenes in aqueous medium vary from 6.82 (2,6-dinitro-) to 12.00 (4-dimethylamino-). The basicity span is 5.18 pKa units. The aqueous pKa values of the P1 phosphazenes were correlated with the respective basicity data in AN and THF and from these correlations the pK(a) values in water for the parent compounds HN=P(NC4H8)3 and HN=P(NMe2)3 were estimated as 13.9 and 13.3. Also a comparison of the basicity of phosphazenes and some guanidines, amines and pyridines was made. In water the parent phosphazenes and guanidines are the strongest of all the groups of bases studied. In AN and THF the parent phosphazenes are clearly the strongest bases followed by guanidines, amines and pyridines which are bracketed between the basicities of phenyl phosphazenes. In the gas phase the phosphazenes for which data are available are clearly more basic than the other compounds referred to here. Comparison of the basicity data of P1 phosphazenes and some guanidines confirms earlier conclusions about the partly ylidic character of the N=P double bond.
Journal of Chromatography A | 2015
Riin Rebane; Toomas Rodima; Agnes Kütt; Koit Herodes
Derivatization is one of the most common ways for improving chromatographic separation and sensitivity for LC-ESI-MS analysis. The aim of this work was to design new derivatization reagents for LC-ESI-MS analysis of amino acids which would (1) provide good reversed phase chromatographic separation, (2) most importantly, provide low detection limits, (3) be easily synthesized, (4) produce derivatives which are less susceptible to matrix influences and (5) have convenient derivatization procedure with stable derivatives suitable for automatization. In the current work two new LC-ESI-MS compatible derivatization reagents have been designed and synthesized, dibenzyl ethoxymethylene malonate (DBEMM) and benzyl ethyl ethoxymethylene malonate (EBEMM). The DBEMM meets all the goals set with instrumental detection limits as low as 1 femtomole for amino acids and 40 attomole for selenoamino acids.
Journal of Physical Chemistry A | 2011
Lauri Lipping; Agnes Kütt; Karl Kaupmees; Ivar Koppel; Peeter Burk; Ivo Leito; Ilmar A. Koppel
The gas-phase acidities of ca. 60 monosubstituted anilines (with acidity span of almost 50 kcal mol(-1)) have been calculated using density functional theory (DFT) at the B3LYP/6-311+G** level. At this relatively simple level of theory the calculated (ΔG(calc)) and available experimental (ΔG(exp)) acidities are in reasonable quantitative correlation according to the following equation: ΔG(obs) = a + bΔG(calc), where a=20.79, b=0.942, n=27, R(2)=0.990, and s=0.78 kcal·mol(-1). The slope is not far from its ideal value. Substituent effects on the acidities were dissected separately into those operating in the neutral acid molecule and in its conjugated anion using the isodesmic homodesmotic reactions. All in all, both forms, neutral and anionic, are contributing in combination to make up the gross acidity of anilines. However, the contributions of the anions into the gross substituent effects are much larger than the substituent effects in the neutral anilines. Some of the systems were used in testing a relatively new theoretical model, COSMO-RS (conductor-like screening model for real solvents), using it for the prediction of pK(a) values in DMSO. The method proved to be rather accurate for showing pK(a) trends (R(2)=0.980 in DMSO). However, the predicted absolute pK(a) values were all somewhat lower (rmsd=2.49 kcal·mol(-1)) than the respective experimental values.
Journal of Organic Chemistry | 2016
Jaan Saame; Toomas Rodima; Sofja Tshepelevitsh; Agnes Kütt; Ivari Kaljurand; Tõiv Haljasorg; Ilmar A. Koppel; Ivo Leito
Experimental basicities of some of the strongest superbases ever measured (phosphonium ylides) are reported, and by employing these compounds, the experimental self-consistent basicity scale of superbases in THF, reaching a pKα (estimate of pKa) of 35 and spanning more than 30 pKa units, has been compiled. Basicities of 47 compounds (around half of which are newly synthesized) are included. The solution basicity of the well-known t-Bu-N═P4(dma)9 phosphazene superbase is now rigorously linked to the scale. The compiled scale is a useful tool for further basicity studies in THF as well as in other solvents, in particular, in acetonitrile. A good correlation between basicities in THF and acetonitrile spanning 25 orders of magnitude gives access to experimentally supported very high (pKa > 40) basicities in acetonitrile, which cannot be directly measured. Analysis of structure-basicity trends is presented.
ChemPhysChem | 2009
Agnes Kütt; Ivar Koppel; Ilmar A. Koppel; Ivo Leito
Designing superacids: A computational study of protonated boratabenzenes and the gas-phase acidity of their conjugate acids is presented. Conjugate acids of boratabenzenes substituted with CN or CF(3) groups (see figure) are highly acidic species; the protonated hexacyanoboratabenzene and hexakis(trifluoromethyl)boratabenzene have computational gas-phase acidities of 250.5 and 276.8 kcal mol(-1), respectively.
Physical Chemistry Chemical Physics | 2011
Nils Trapp; Harald Scherer; Stuart A. Hayes; Raphael J. F. Berger; Agnes Kütt; Norbert W. Mitzel; Jaan Saame; Ingo Krossing
The syntheses of the perfluorinated alcohols (F(5)C(6))(F(3)C)(2)COH (1) and (F(5)C(6))(C(5)F(10))COH (2) are described. Both compounds were prepared in reasonable yields (1: 65%, 2: 85%) by reacting the corresponding ketone with C(6)F(5)MgBr, followed by acidic work-up. The alcohols were characterized by NMR, vibrational spectroscopy, single-crystal X-ray diffraction, acidity measurements and gas-phase electron diffraction. A combination of appropriate 2D NMR experiments allowed the unambiguous assignment of all signals in the (19)F spin systems, of which that of 2 was especially complex. High acidity of the alcohols is indicated by acidity measurements as well as the calculated gas phase acidities. It is also supported by the crystal structure of 2, which exhibits only a single weak intermolecular hydrogen bridge with an O...O distance of 301 pm. This shows the low donor strength of the oxygen atom in the compound, which is partly compensated through formation of two intramolecular CF...H contacts of 220 and 232 pm length to the proton not involved in the hydrogen bridge. The pK(a) values in acetonitrile are 22.2 for 1 and 22.0 for 2; their calculated gas phase acidities are 1367 and 1343 kJ mol(-1) (MP2/TZVPP level).