Karl Kaupmees
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karl Kaupmees.
Journal of Mass Spectrometry | 2013
Anneli Kruve; Karl Kaupmees; Jaanus Liigand; Merit Oss; Ivo Leito
Formation of sodium adducts in electrospray (ESI) has been known for long time, but has not been used extensively in practice, and several important aspects of Na(+) adduct formation in ESI source have been almost unexplored: the ionization efficiency of different molecules via Na(+) adduct formation, its dependence on molecular structure and Na(+) ion concentration in solution, fragmentation behaviour of the adducts as well as the ruggedness (a prerequisite for wider practical use) of ionization via Na(+) adduct formation. In this work, we have developed a parameter describing sodium adducts formation efficiency (SAFE) of neutral molecules and have built a SAFE scale that ranges for over four orders of magnitude and contains 19 compounds. In general, oxygen bases have higher efficiency of Na(+) adducts formation than nitrogen bases because of the higher partial negative charge on oxygen atoms and competition from protonation in the case of nitrogen bases. Chelating ability strongly increases the Na(+) adduct formation efficiency. We show that not only protonation but also Na(+) adduct formation is a quantitative and reproducible process if relative measurements are performed.
Chemical Science | 2013
Lutz Greb; Sebastian Tussing; Birgitta Schirmer; Pascual Oña-Burgos; Karl Kaupmees; Märt Lõkov; Ivo Leito; Stefan Grimme; Jan Paradies
The frustrated Lewis pair-mediated reversible hydrogen activation is studied as a function of the electron-donor quality of a series of phosphines. The increasing acidity of the generated phosphonium species leads to a stepwise lowering of the temperature for the highly reversible H2-activation and permits concrete classification for the first time. The influence of the acid strength on the metal-free hydrogenation of selected olefins is investigated by kinetic experiments and quantum chemical calculations. Detailed information for the rate-determining steps fully support our mechanistic model of a protonation step prior to hydride transfer. The rate of hydrogenation is strongly dependent on the electronic nature of the phosphine and of the acidity of the corresponding phosphonium cation. A careful balance of these two factors provides highly efficient metal-free hydrogenation catalysts. The provided findings are used to revise the reactivity of Lewis bases in the hydrogenation of imines, one of the most recognized applications of FLPs.
Analytical Chemistry | 2014
Anneli Kruve; Karl Kaupmees; Jaanus Liigand; Ivo Leito
Electrospray ionization (ESI) in the negative ion mode has received less attention in fundamental studies than the positive ion electrospray ionization. In this paper, we study the efficiency of negative ion formation in the ESI source via deprotonation of substituted phenols and benzoic acids and explore correlations of the obtained ionization efficiency values (logIE) with different molecular properties. It is observed that stronger acids (i.e., fully deprotonated in the droplets) yielding anions with highly delocalized charge [quantified by the weighted average positive sigma (WAPS) parameter rooted in the COSMO theory] have higher ionization efficiency and give higher signals in the negative-ion ESI/MS. A linear model was obtained, which equally well describes the logIE of both phenols and benzoic acids (R(2) = 0.83, S = 0.40 log units) and contains only an ionization degree in solution (α) and WAPS as molecular parameters. Both parameters can easily be calculated with the COSMO-RS method. The model was successfully validated using a test set of acids belonging neither to phenols nor to benzoic acids, thereby demonstrating its broad applicability and the universality of the above-described relationships between IE and molecular properties.
Journal of Physical Chemistry A | 2010
Karl Kaupmees; Ivari Kaljurand; Ivo Leito
The effect of traces of water on the relative strengths of acids (ΔpK(a) values) in acetonitrile was quantitatively evaluated experimentally and computationally (COSMO-RS). Water affects first of all the anions by selective solvation. Expectedly, the more localized is the charge in acid anions the higher is the effect of water. The energetic effect of increasing water content from 0 to ca. 10,000 ppm on solvation enthalpies of anions ranged from 0.2-0.4 kcal mol⁻¹ (anions with delocalized charges) to 15 kcal mol⁻¹ in the case of the highly charge-localized acetate ion. In the case of ΔpK(a) values the change ranges from 0.01 to ca. 1.7 pK(a) units (acid pair involving acetic acid). The COSMO-RS method was found to satisfactorily describe the trends in ΔpK(a) values. To quantify the extent of charge localization/delocalization in anions a parameter, weighted average positive σ (WAPS), was introduced, which can be conveniently computed using the COSMO approach. WAPS characterizes the distribution of charge density across the molecular surface and was found to correlate well with the extent of water influence on the dissociation of the respective acid.
Angewandte Chemie | 2015
Ivo Leito; Ilmar A. Koppel; Ivar Koppel; Karl Kaupmees; Sofja Tshepelevitsh; Jaan Saame
The potential limits of superbasicity achievable with different families of neutral bases by expanding the molecular framework are explored using DFT computations. A number of different core structures of non-ionic organosuperbases are considered (such as phosphazenes, guanidinophosphazenes, guanidino phosphorus ylides). A simple model for describing the dependence of basicity on the extent of the molecular framework is proposed, validated, and used for quantitatively predicting the ultimate basicities of different compound families and the rates of substituent effect saturation. Some of the considered bases (guanidino phosphorus carbenes) are expected to reach gas-phase basicity around 370 kcal mol(-1), thus being the most basic neutral bases ever reported. Also, the classical substituted alkylphosphazenes were predicted to reach pK(a) values of around 50 in acetonitrile, which is significantly higher than previously expected.
Journal of Physical Chemistry A | 2011
Lauri Lipping; Agnes Kütt; Karl Kaupmees; Ivar Koppel; Peeter Burk; Ivo Leito; Ilmar A. Koppel
The gas-phase acidities of ca. 60 monosubstituted anilines (with acidity span of almost 50 kcal mol(-1)) have been calculated using density functional theory (DFT) at the B3LYP/6-311+G** level. At this relatively simple level of theory the calculated (ΔG(calc)) and available experimental (ΔG(exp)) acidities are in reasonable quantitative correlation according to the following equation: ΔG(obs) = a + bΔG(calc), where a=20.79, b=0.942, n=27, R(2)=0.990, and s=0.78 kcal·mol(-1). The slope is not far from its ideal value. Substituent effects on the acidities were dissected separately into those operating in the neutral acid molecule and in its conjugated anion using the isodesmic homodesmotic reactions. All in all, both forms, neutral and anionic, are contributing in combination to make up the gross acidity of anilines. However, the contributions of the anions into the gross substituent effects are much larger than the substituent effects in the neutral anilines. Some of the systems were used in testing a relatively new theoretical model, COSMO-RS (conductor-like screening model for real solvents), using it for the prediction of pK(a) values in DMSO. The method proved to be rather accurate for showing pK(a) trends (R(2)=0.980 in DMSO). However, the predicted absolute pK(a) values were all somewhat lower (rmsd=2.49 kcal·mol(-1)) than the respective experimental values.
Angewandte Chemie | 2017
Denis Höfler; Manuel van Gemmeren; Petra Wedemann; Karl Kaupmees; Ivo Leito; Markus Leutzsch; Julia B. Lingnau; Benjamin List
Tetratrifylpropene (TTP) has been developed as a highly acidic, allylic C-H acid for Brønsted and Lewis acid catalysis. It can readily be obtained in two steps and consistently shows exceptional catalytic activities for Mukaiyama aldol, Hosomi-Sakurai, and Friedel-Crafts acylation reactions. X-ray analyses of TTP and its salts confirm its designed, allylic structure, in which the negative charge is delocalized over four triflyl groups. NMR experiments, acidity measurements, and theoretical investigations provide further insights to rationalize the remarkable reactivity of TTP.
Journal of Organic Chemistry | 2014
Kévin Isaac; Jérémy Stemper; Vincent Servajean; Pascal Retailleau; Julien Pastor; Gilles Frison; Karl Kaupmees; Ivo Leito; Jean-François Betzer; Angela Marinetti
Phosphoric acids with planar chiral paracyclophane scaffolds have been prepared in optically pure form starting from 1,8-dibromobiphenylene, by means of a chiral phosphorodiamidate as the phosphorylating agent. Structural characterization and configurational assignment have been performed by X-ray diffraction studies. The acids promote the organocatalytic enantioselective H-transfer reduction of α-arylquinolines with up to 90% enantiomeric excess.
Analytical Chemistry | 2017
Piia Liigand; Karl Kaupmees; Kristjan Haav; Jaanus Liigand; Ivo Leito; Marion Girod; Rodolphe Antoine; Anneli Kruve
For the first time, the electrospray ionization efficiency (IE) scales in positive and negative mode are united into a single system enabling direct comparison of IE values across ionization modes. This is made possible by the use of a reference compound that ionizes to a similar extent in both positive and negative modes. Thus, choosing the optimal (i.e., most sensitive) ionization conditions for a given set of analytes is enabled. Ionization efficiencies of 33 compounds ionizing in both modes demonstrate that, contrary to general practice, negative mode allows better sensitivity for 46% of such compounds whereas the positive mode is preferred for only 18%, and for 36%, the results for both modes are comparable.
Analytical Chemistry | 2017
Anneli Kruve; Karl Kaupmees
LC/ESI/MS is a technique widely used for qualitative and quantitative analysis in various fields. However, quantification is currently possible only for compounds for which the standard substances are available, as the ionization efficiency of different compounds in ESI source differs by orders of magnitude. In this paper we present an approach for quantitative LC/ESI/MS analysis without standard substances. This approach relies on accurately predicting the ionization efficiencies in ESI source based on a model, which uses physicochemical parameters of analytes. Furthermore, the model has been made transferable between different mobile phases and instrument setups by using a suitable set of calibration compounds. This approach has been validated both in flow injection and chromatographic mode with gradient elution.