Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnes L. Nishimura is active.

Publication


Featured researches published by Agnes L. Nishimura.


Science | 2009

Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6

Caroline Vance; Boris Rogelj; Tibor Hortobágyi; Kurt J. De Vos; Agnes L. Nishimura; Jemeen Sreedharan; Xun Hu; Bradley Smith; Deborah Ruddy; Paul D. Wright; Jeban Ganesalingam; Kelly L. Williams; Vineeta Tripathi; Safa Al-Saraj; Ammar Al-Chalabi; P. Nigel Leigh; Ian P. Blair; Garth A. Nicholson; Jackie de Belleroche; Jean-Marc Gallo; Christopher Miller; Christopher Shaw

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is familial in 10% of cases. We have identified a missense mutation in the gene encoding fused in sarcoma (FUS) in a British kindred, linked to ALS6. In a survey of 197 familial ALS index cases, we identified two further missense mutations in eight families. Postmortem analysis of three cases with FUS mutations showed FUS-immunoreactive cytoplasmic inclusions and predominantly lower motor neuron degeneration. Cellular expression studies revealed aberrant localization of mutant FUS protein. FUS is involved in the regulation of transcription and RNA splicing and transport, and it has functional homology to another ALS gene, TARDBP, which suggests that a common mechanism may underlie motor neuron degeneration.


American Journal of Human Genetics | 2004

A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis

Agnes L. Nishimura; Miguel Mitne-Neto; Helga C. A. Silva; Antonio Richieri-Costa; Susan Middleton; Duilio Cascio; Fernando Kok; João Ricardo Mendes de Oliveira; Thomas H. Gillingwater; Jeanette Webb; Paul Skehel; Mayana Zatz

Motor neuron diseases (MNDs) are a group of neurodegenerative disorders with involvement of upper and/or lower motor neurons, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), progressive bulbar palsy, and primary lateral sclerosis. Recently, we have mapped a new locus for an atypical form of ALS/MND (atypical amyotrophic lateral sclerosis [ALS8]) at 20q13.3 in a large white Brazilian family. Here, we report the finding of a novel missense mutation in the vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) gene in patients from this family. Subsequently, the same mutation was identified in patients from six additional kindreds but with different clinical courses, such as ALS8, late-onset SMA, and typical severe ALS with rapid progression. Although it was not possible to link all these families, haplotype analysis suggests a founder effect. Members of the vesicle-associated proteins are intracellular membrane proteins that can associate with microtubules and that have been shown to have a function in membrane transport. These data suggest that clinically variable MNDs may be caused by a dysfunction in intracellular membrane trafficking.


Nature Neuroscience | 2011

Characterizing the RNA targets and position-dependent splicing regulation by TDP-43

James Tollervey; Tomaž Curk; Boris Rogelj; Michael Briese; Matteo Cereda; Melis Kayikci; Julian König; Tibor Hortobágyi; Agnes L. Nishimura; Vera Župunski; Rickie Patani; Siddharthan Chandran; Gregor Rot; Blaž Zupan; Christopher Shaw; Jernej Ule

TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain.TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability

Bilada Bilican; Andrea Serio; Sami J. Barmada; Agnes L. Nishimura; Gareth J. Sullivan; Monica A. Carrasco; Hemali P. Phatnani; Clare A. Puddifoot; David Story; Judy Fletcher; In-Hyun Park; Brad A. Friedman; George Q. Daley; David J. A. Wyllie; Giles E. Hardingham; Ian Wilmut; Steven Finkbeiner; Tom Maniatis; Christopher Shaw; Siddharthan Chandran

Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening.


Cell Reports | 2013

Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

Youn Bok Lee; Han-Jou Chen; João N. Peres; Jorge Gomez-Deza; Maja Štalekar; Claire Troakes; Agnes L. Nishimura; Emma L. Scotter; Caroline Vance; Yoshitsugu Adachi; Valentina Sardone; John Miller; Bradley Smith; Jean-Marc Gallo; Jernej Ule; Frank Hirth; Boris Rogelj; Corinne Houart; Christopher Shaw

Summary The GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy.

Andrea Serio; Bilada Bilican; Sami J. Barmada; Dale Michael Ando; Chen Zhao; Rick Siller; Karen Burr; Ghazal Haghi; David Story; Agnes L. Nishimura; Monica A. Carrasco; Hemali P. Phatnani; Carole Shum; Ian Wilmut; Tom Maniatis; Christopher Shaw; Steven Finkbeiner; Siddharthan Chandran

Glial proliferation and activation are associated with disease progression in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia. In this study, we describe a unique platform to address the question of cell autonomy in transactive response DNA-binding protein (TDP-43) proteinopathies. We generated functional astroglia from human induced pluripotent stem cells carrying an ALS-causing TDP-43 mutation and show that mutant astrocytes exhibit increased levels of TDP-43, subcellular mislocalization of TDP-43, and decreased cell survival. We then performed coculture experiments to evaluate the effects of M337V astrocytes on the survival of wild-type and M337V TDP-43 motor neurons, showing that mutant TDP-43 astrocytes do not adversely affect survival of cocultured neurons. These observations reveal a significant and previously unrecognized glial cell-autonomous pathological phenotype associated with a pathogenic mutation in TDP-43 and show that TDP-43 proteinopathies do not display an astrocyte non-cell-autonomous component in cell culture, as previously described for SOD1 ALS. This study highlights the utility of induced pluripotent stem cell-based in vitro disease models to investigate mechanisms of disease in ALS and other TDP-43 proteinopathies.


Cell Reports | 2012

FUS-SMN Protein Interactions Link the Motor Neuron Diseases ALS and SMA

Tomohiro Yamazaki; Shi Chen; Yong Yu; Biao Yan; Tyler C. Haertlein; Monica A. Carrasco; Juan Carlos Tapia; Bo Zhai; Rita Das; Melanie Lalancette-Hebert; Aarti Sharma; Siddharthan Chandran; Gareth J. Sullivan; Agnes L. Nishimura; Christopher Shaw; Steve P. Gygi; Neil A Shneider; Tom Maniatis; Robin Reed

Mutations in the RNA binding protein FUS cause amyotrophic lateral sclerosis (ALS), a fatal adult motor neuron disease. Decreased expression of SMN causes the fatal childhood motor neuron disorder spinal muscular atrophy (SMA). The SMN complex localizes in both the cytoplasm and nuclear Gems, and loss of Gems is a cellular hallmark of fibroblasts in patients with SMA. Here, we report that FUS associates with the SMN complex, mediated by U1 snRNP and by direct interactions between FUS and SMN. Functionally, we show that FUS is required for Gem formation in HeLa cells, and expression of FUS containing a severe ALS-causing mutation (R495X) also results in Gem loss. Strikingly, a reduction in Gems is observed in ALS patient fibroblasts expressing either mutant FUS or TDP-43, another ALS-causing protein that interacts with FUS. The physical and functional interactions among SMN, FUS, TDP-43, and Gems indicate that ALS and SMA share a biochemical pathway, providing strong support for the view that these motor neuron diseases are related.


Journal of Cell Science | 2014

Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species

Emma L. Scotter; Caroline Vance; Agnes L. Nishimura; Youn Bok Lee; Han-Jou Chen; Hazel Urwin; Valentina Sardone; Jacqueline C. Mitchell; Boris Rogelj; David C. Rubinsztein; Christopher Shaw

ABSTRACT TAR DNA-binding protein (TDP-43, also known as TARDBP) is the major pathological protein in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Large TDP-43 aggregates that are decorated with degradation adaptor proteins are seen in the cytoplasm of remaining neurons in ALS and FTD patients post mortem. TDP-43 accumulation and ALS-linked mutations within degradation pathways implicate failed TDP-43 clearance as a primary disease mechanism. Here, we report the differing roles of the ubiquitin proteasome system (UPS) and autophagy in the clearance of TDP-43. We have investigated the effects of inhibitors of the UPS and autophagy on the degradation, localisation and mobility of soluble and insoluble TDP-43. We find that soluble TDP-43 is degraded primarily by the UPS, whereas the clearance of aggregated TDP-43 requires autophagy. Cellular macroaggregates, which recapitulate many of the pathological features of the aggregates in patients, are reversible when both the UPS and autophagy are functional. Their clearance involves the autophagic removal of oligomeric TDP-43. We speculate that, in addition to an age-related decline in pathway activity, a second hit in either the UPS or the autophagy pathway drives the accumulation of TDP-43 in ALS and FTD. Therapies for clearing excess TDP-43 should therefore target a combination of these pathways.


Human Molecular Genetics | 2013

ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules

Caroline Vance; Emma L. Scotter; Agnes L. Nishimura; Claire Troakes; Jacqueline C. Mitchell; Claudia Kathe; Hazel Urwin; Catherine Manser; Christopher Miller; Tibor Hortobágyi; Mike Dragunow; Boris Rogelj; Christopher Shaw

Mutations in the gene encoding Fused in Sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. FUS is a predominantly nuclear DNA- and RNA-binding protein that is involved in RNA processing. Large FUS-immunoreactive inclusions fill the perikaryon of surviving motor neurons of ALS patients carrying mutations at post-mortem. This sequestration of FUS is predicted to disrupt RNA processing and initiate neurodegeneration. Here, we demonstrate that C-terminal ALS mutations disrupt the nuclear localizing signal (NLS) of FUS resulting in cytoplasmic accumulation in transfected cells and patient fibroblasts. FUS mislocalization is rescued by the addition of the wild-type FUS NLS to mutant proteins. We also show that oxidative stress recruits mutant FUS to cytoplasmic stress granules where it is able to bind and sequester wild-type FUS. While FUS interacts with itself directly by protein–protein interaction, the recruitment of FUS to stress granules and interaction with PABP are RNA dependent. These findings support a two-hit hypothesis, whereby cytoplasmic mislocalization of FUS protein, followed by cellular stress, contributes to the formation of cytoplasmic aggregates that may sequester FUS, disrupt RNA processing and initiate motor neuron degeneration.


Human Genetics | 2005

A common founder for amyotrophic lateral sclerosis type 8 (ALS8) in the Brazilian population

Agnes L. Nishimura; Ammar Al-Chalabi; Mayana Zatz

The P56S mutation in the VAPB gene causes ALS8. Eight families, comprising more than 1,500 individuals of whom about 200 are affected, are now known to carry this mutation. Seven are of Portuguese–Brazilian ancestry and one of African–Brazilian ancestry. Haplotype analysis shows a common founder for all families regardless of ancestry, with a founding event 23 generations ago (95% CI 13–39), consistent with the Portuguese colonization of Brazil.

Collaboration


Dive into the Agnes L. Nishimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayana Zatz

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Boris Rogelj

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge