Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnese Pellati is active.

Publication


Featured researches published by Agnese Pellati.


Connective Tissue Research | 2003

Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants.

Monica De Mattei; Michela Pasello; Agnese Pellati; Giordano Stabellini; Leo Massari; Donato Gemmati; Angelo Caruso

Electromagnetic field (EMF) exposure has been proposed for the treatment of osteoarthritis. In this study, we investigated the effects of EMF (75 Hz, 2,3 mT) on proteoglycan (PG) metabolism of bovine articular cartilage explants cultured in vitro, both under basal conditions and in the presence of interleukin-1 g (IL-1 g ) in the culture medium. Proteoglycan synthesis and the residual PG tissue content resulted significantly higher in EMF-exposed explants than in controls, whereas no effect was observed on PG release and nitric oxide (NO) production. IL-1 g induced both a reduction in PG synthesis and an increase in PG release, related to a strong stimulation of NO production, which resulted in a net loss of tissue PG content. In IL-1 g -treated explants, EMF increased PG synthesis, whereas in spite of a slight stimulation of NO production EMF did not modify PG release. This resulted in the residual PG tissue content being maintained at the control level. In both experimental conditions, the effects of EMF were associated with an increase in lactate production. The results of our study show that EMFs are able to promote anabolic activities and PG synthesis in bovine articular cartilage explants. This effect also is maintained in the presence of IL-1 g , thus counteracting the catabolic activity of the cytokine. Altogether, these data suggest that EMF exposure exerts a chondroprotective effect on articular cartilage in vitro.


Connective Tissue Research | 2001

Effects of Pulsed Electromagnetic Fields on Human Articular Chondrocyte Proliferation

Monica De Mattei; Angelo Caruso; Furio Pezzetti; Agnese Pellati; Giordano Stabellini; Vincenzo Sollazzo; Gian Carlo Traina

Low-energy, low-frequency pulsed electromagnetic fields (PEMFs) can induce cell proliferation in several cell culture models. In this work we analysed the proliferative response of human articular chondrocytes, cultured in medium containing 10% FBS, following prolonged exposure to PEMFs (75 Hz, 2.3 mT), currently used in the treatment of some orthopaedic pathologies. In particular, we investigated the dependence of the proliferative effects on the cell density, the availability of growth factors and the exposure lengths. We observed that PEMFs can induce cell proliferation of low density chondrocyte cultures for a long time (6 days), when fresh serum is added again in the culture medium. In the same conditions, in high density cultures, the PEMF-induced increase in cell proliferation was observed only in the first three days of exposure. The data presented in this study show that the availability of growth factors and the environmental constrictions strongly condition the cellular proliferative response to PEMFs.


Haematologica | 2009

Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival

Alessia Ongaro; Monica De Mattei; Matteo G. Della Porta; Gian Matteo Rigolin; Cristina Ambrosio; Francesco Di Raimondo; Agnese Pellati; Federica Francesca Masieri; Angelo Caruso; Linda Catozzi; Donato Gemmati

Individual variations in response and/or toxicity to anti-cancer agents is common. The antifolate agent methotrexate is frequently used in maintenace therapy of acute lymphoblastic leukemia. The findings of this study suggest that genotyping of folate polymorphisms might be useful in adult acute lymphoblastic leukemia to optimize methotrexate therapy, reducing the associated toxicity with possible effects on survival. Background The antifolate agent methotrexate is an important component of maintenance therapy in acute lymphoblastic leukemia, although methotrexate-related toxicity is often a reason for interruption of chemotherapy. Prediction of toxicity is difficult because of inter-individual variability susceptibility to antileukemic agents. Methotrexate interferes with folate metabolism leading to depletion of reduced folates. Design and Methods The aim of this study was to investigate the influence of polymorphisms for folate metabolizing enzymes with respect to toxicity and survival in adult patients with acute lymphoblastic leukemia treated with methotrexate maintenance therapy. To this purpose, we evaluated possible associations between genotype and hematologic and non-hematologic toxicity and effects on survival at 2 years of follow-up in patients with acute lymphoblastic leukemia. Results Polymorphisms in the genes encoding for methylenetetrahydrofolate reductase (MTHFR 677C>T) and in dihydrofolate reductase (DHFR 19 bp deletion) significantly increased the risk of hepatotoxicity in single (odds ratio 5.23, 95% confidence interval 1.13–21.95 and odds ratio 4.57, 95% confidence interval 1.01–20.77, respectively) and in combined analysis (odds ratio 6.82, 95% confidence interval 1.38–33.59). MTHFR 677C>T also increased the risk of leukopenia and gastrointestinal toxicity, whilst thymidylate synthase 28 bp repeat polymorphism increased the risk of anemia (odds ratio 8.48, 95% confidence interval 2.00–36.09). Finally, patients with MTHFR 677TT had a decreased overall survival rate (hazard ratio 2.37, 95% confidence interval 1.46–8.45). Conclusions Genotyping of folate polymorphisms might be useful in adult acute lymphoblastic leukemia to optimize methotrexate therapy, reducing the associated toxicity with possible effects on survival.


Journal of Cellular Physiology | 2012

Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts.

Alessia Ongaro; Katia Varani; Federica Francesca Masieri; Agnese Pellati; Leo Massari; Ruggero Cadossi; Fabrizio Vincenzi; Pier Andrea Borea; Milena Fini; Angelo Caruso; M. De Mattei

Synovial fibroblasts (SFs) contribute to the development of osteoarthritis (OA) by the secretion of a wide range of pro‐inflammatory mediators, including cytokines and lipid mediators of inflammation. Previous studies suggest that electromagnetic fields (EMFs) may represent a potential therapeutic approach to limit cartilage degradation and control inflammation associated to OA, and that they may act through the adenosine pathway. Therefore, we investigated whether EMFs might modulate inflammatory activities of human SFs from OA patients (OASFs) treated with interleukin‐1β (IL‐1β), and the possible involvement of adenosine receptors (ARs) in mediating EMF effects. EMF exposure induced a selective increase in A2A and A3 ARs. These increases were associated to changes in cAMP levels, indicating that ARs were functionally active also in EMF‐exposed cells. Functional data obtained in the presence of selective A2A and A3 adenosine agonists and antagonists showed that EMFs inhibit the release of prostaglandin E2 (PGE2) and the proinflammatory cytokines interleukin‐6 (IL‐6) and interleukin‐8 (IL‐8), while stimulating the release of interleukin‐10 (IL‐10), an antinflammatory cytokine. These effects seem to be mediated by the EMF‐induced upregulation of A2A and A3 ARs. No effects of EMFs or ARs have been observed on matrix degrading enzyme production. In conclusion, this study shows that EMFs display anti‐inflammatory effects in human OASFs, and that these EMF‐induced effects are in part mediated by the adenosine pathway, specifically by the A2A and A3 AR activation. Taken together, these results open new clinical perspectives to the control of inflammation associated to joint diseases. J. Cell. Physiol. 227: 2461–2469, 2012.


Bioelectromagnetics | 2011

Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants

Alessia Ongaro; Agnese Pellati; Federica Francesca Masieri; Angelo Caruso; Stefania Setti; Ruggero Cadossi; Roberto Biscione; Leo Massari; Milena Fini; Monica De Mattei

This study investigated the effects of pulsed electromagnetic fields (PEMFs) on proteoglycan (PG) metabolism of human articular cartilage explants from patients with osteoarthritis (OA). Human cartilage explants, recovered from lateral and medial femoral condyles, were classified according to the International Cartilage Repair Society (ICRS) and graded based on Outerbridge scores. Explants cultured in the absence and presence of IL-1β were treated with PEMF (1.5  mT, 75  Hz) or IGF-I alone or in combination for 1 and 7 days. PG synthesis and release were determined. Results showed that explants derived from lateral and medial condyles scored OA grades I and III, respectively. In OA grade I explants, after 7 days exposure, PEMF and IGF-I significantly increased (35) S-sulfate incorporation 49% and 53%, respectively, compared to control, and counteracted the inhibitory effect of IL 1β (0.01 ng/ml). The combined exposure to PEMF and IGF-I was additive in all conditions. Similar results were obtained in OA grade III cartilage explants. In conclusion, PEMF and IGF-I augment cartilage explant anabolic activities, increase PG synthesis, and counteract the catabolic activity of IL-1β in OA grades I and III. We hypothesize that both IGF-I and PEMF have chondroprotective effects on human articular cartilage, particularly in early stages of OA.


Bioelectromagnetics | 1997

Responses of Human MG-63 Osteosarcoma Cell Line and Human Osteoblast-Like Cells to Pulsed Electromagnetic Fields

Vincenzo Sollazzo; Gian Carlo Traina; Monica DeMattei; Agnese Pellati; Furio Pezzetti; Angelo Caruso

We have studied the effects of low-energy, low-frequency pulsed electromagnetic fields (PEMF) on cell proliferation, in both human osteoblast-like cells obtained from bone specimens and in human MG-63 osteosarcoma cell line. Assessment of osteoblastic phenotype was performed both by immunolabeling with antiosteonectin antibody and by verifying the presence of parathyroid hormone receptors. The cells were placed in multiwell plates and set in a tissue culture incubator between a pair of Helmholtz coils powered by a pulse generator (1.3 ms, 75 Hz) for different periods of time. [3H]Thymidine incorporation was used to evaluate cell proliferation. Since it had previously been observed that the osteoblast proliferative response to PEMF exposure may also be conditioned by the presence of serum in the medium, experiments were carried out at different serum concentrations. [3H]Thymidine incorporation increases in osteoblast-like cells, when they are exposed to PEMF in the presence of 10% fetal calf serum (FCS). The greatest effect is observed after 24 hours of PEMF exposure. No effects on cell proliferation are observed when osteoblast-like cells are exposed to PEMF in the presence of 0.5% FCS or in a serum-free medium. On the other hand, PEMF-exposed MG-63 cells show increased cell proliferation either at 10% FCS, 0.5% FCS and in serum-free medium. Nevertheless, the maximum effect of PEMF exposure on MG-63 cell proliferation depends on the percentage of FCS in the medium. The higher the FCS concentration, the faster the proliferative response to PEMF exposure. Our results show that, although MG-63 cells display some similarity with human bone cells, their responses to PEMFs exposure are quite different from that observed in normal human bone cells.


Bioelectromagnetics | 2014

Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells

Alessia Ongaro; Agnese Pellati; Leila Bagheri; Cinzia Fortini; Stefania Setti; Monica De Mattei

Pulsed electromagnetic fields (PEMFs) play a regulatory role on osteoblast activity and are clinically beneficial during fracture healing. Human mesenchymal stem cells (MSCs) derived from different sources have been extensively used in bone tissue engineering. Compared with MSCs isolated from bone marrow (BMSCs), those derived from adipose tissue (ASCs) are easier to obtain and available in larger amounts, although they show a less osteogenic differentiation potential than BMSCs. The hypothesis tested in this study was to evaluate whether PEMFs favor osteogenic differentiation both in BMSCs and in ASCs and to compare the role of PEMFs alone and in combination with the biochemical osteogenic stimulus bone morphogenetic protein (BMP)-2. Early and later osteogenic markers, such as alkaline phosphatase (ALP) activity, osteocalcin levels, and matrix mineralization, were analyzed at different times during osteogenic differentiation. Results showed that PEMFs induced osteogenic differentiation by increasing ALP activity, osteocalcin, and matrix mineralization in both BMSCs and ASCs, suggesting that PEMF activity is maintained during the whole differentiation period. The addition of BMP-2 in PEMF exposed cultures further increased all the osteogenic markers in BMSCs, while in ASCs, the stimulatory role of PEMFs was independent of BMP-2. Our results indicate that PEMFs may stimulate an early osteogenic induction in both BMSCs and ASCs and they suggest PEMFs as a bioactive factor to enhance the osteogenesis of ASCs, which are an attractive cell source for clinical applications. In conclusion, PEMFs may be considered a possible tool to improve autologous cell-based regeneration of bone defects in orthopedics.


Dermatologic Surgery | 2008

Time- and Dose-Dependent Effects of Chronic Wound Fluid on Human Adult Dermal Fibroblasts

Monica De Mattei; Alessia Ongaro; Simona Magaldi; Donato Gemmati; Andrea Legnaro; Annunziata Palazzo; Federica Francesca Masieri; Agnese Pellati; Linda Catozzi; Angelo Caruso; Paolo Zamboni

BACKGROUND Wound healing is a biologic process that is altered in patients affected by chronic venous ulcers. The wound microenvironment is reflected in the chronic wound fluid (CWF), an exudate containing serum components and tissue-derived proteins. OBJECTIVES We investigated the effects of increasing doses of CWF collected from patients suffering from chronic venous ulcers on human adult dermal fibroblasts cultured in vitro and the relationship among CWF effects and treatment length. METHODS Fibroblasts were treated with 60, 240, and 720 μg/mL CWF for 3 and 7 days. We evaluated cell proliferation and viability by MTT and Trypan blue assay, cell morphology by light microscopy, F-actin microfilaments organization by tetramethylrhodamine B isothiocyanate-conjugated phalloidin, α-smooth muscle actin expression by immunofluorescence, and senescence-associated β-galactosidase activity. RESULTS CWF induced an increase in cell proliferation in the first 3 days of treatment. In contrast, at 7 days, a strong decrease in cell viability was observed. These changes were related to a cytoskeletal F-actin reorganization and not to fibroblast–myofibroblast differentiation nor to changes in cellular senescence. CONCLUSIONS This study shows a dose-dependent and biphasic effect of CWF on dermal fibroblasts, suggesting that a continuous exposure to chronic wounds microenvironment may induce late cellular dysfunctions possibly involved in the delayed wound healing.


Journal of Tissue Engineering and Regenerative Medicine | 2015

Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells

Alessia Ongaro; Agnese Pellati; Stefania Setti; Federica Francesca Masieri; Giorgio Aquila; Milena Fini; Angelo Caruso; Monica De Mattei

Osteoarthritis (OA) is a common joint disease associated with articular cartilage degeneration. To improve the therapeutic options of OA, tissue engineering based on the use of mesenchymal stem cells (MSCs) has emerged. However, the presence of inflammatory cytokines, such as interleukin‐1β (IL‐1β), during chondrogenesis reduces the efficacy of cartilage engineering repair procedures by preventing chondrogenic differentiation. Previous studies have shown that electromagnetic fields (EMFs) stimulate anabolic processes in OA cartilage and limit IL‐1β catabolic effects. We investigated the role of EMFs during chondrogenic differentiation of MSCs, isolated from bovine synovial fluid, in the absence and presence of IL‐1β. Pellets of MSCs were differentiated for 3 and 5 weeks with transforming growth factor‐β3 (TGFβ3), in the absence and presence of IL‐1β and exposed or unexposed to EMFs. Biochemical, quantitative real‐time RT–PCR and histological results showed that EMFs alone or in the presence of TGFβ3 play a limited role in promoting chondrogenic differentiation. Notably, in the presence of IL‐1β and TGFβ3 a recovery of proteoglycan (PG) synthesis, PG content and aggrecan and type II collagen mRNA expression in the EMF‐exposed compared to unexposed pellets was observed. Also, histological and immunohistochemical results showed an increase in staining for alcian blue, type II collagen and aggrecan in EMF‐exposed pellets. In conclusion, this study shows a significant role of EMFs in counteracting the IL‐1β‐induced inhibition of chondrogenesis, suggesting EMFs as a therapeutic strategy for improving the clinical outcome of cartilage engineering repair procedures, based on the use of MSCs. Copyright


Technology in Cancer Research & Treatment | 2016

Evaluation of the Electroporation Efficiency of a Grid Electrode for Electrochemotherapy: From Numerical Model to In Vitro Tests.

Alessia Ongaro; Luca Giovanni Campana; M. De Mattei; Fabrizio Dughiero; Michele Forzan; Agnese Pellati; Carlo Riccardo Rossi; Elisabetta Sieni

Electrochemotherapy (ECT) is a local anticancer treatment based on the combination of chemotherapy and short, tumor-permeabilizing, voltage pulses delivered using needle electrodes or plate electrodes. The application of ECT to large skin surface tumors is time consuming due to technical limitations of currently available voltage applicators. The availability of large pulse applicators with few and more spaced needle electrodes could be useful in the clinic, since they could allow managing large and spread tumors while limiting the duration and the invasiveness of the procedure. In this article, a grid electrode with 2-cm spaced needles has been studied by means of numerical models. The electroporation efficiency has been assessed on human osteosarcoma cell line MG63 cultured in monolayer. The computational results show the distribution of the electric field in a model of the treated tissue. These results are helpful to evaluate the effect of the needle distance on the electric field distribution. Furthermore, the in vitro tests showed that the grid electrode proposed is suitable to electropore, by a single application, a cell culture covering an area of 55 cm2. In conclusion, our data might represent substantial improvement in ECT in order to achieve a more homogeneous and time-saving treatment, with benefits for patients with cancer.

Collaboration


Dive into the Agnese Pellati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge