Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milena Fini is active.

Publication


Featured researches published by Milena Fini.


Biomaterials | 2001

Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits.

Brunella Grigolo; Livia Roseti; Mauro Fiorini; Milena Fini; Gianluca Giavaresi; Nicolò Nicoli Aldini; Roberto Giardino; Andrea Facchini

Different methods have been used to improve chondrocyte transplantation for the repair of articular cartilage defects. Several groups of biomaterials have been proposed as support for in vitro cell growth and for in vivo implantation. Here. we describe a new approach investigating the healing of rabbit cartilage by means of autologous chondrocytes seeded on a hyaluronan derivative referred to as Hyaff-11. Full thickness defects were created bilaterally in the weight-bearing surface of the medial femoral condyle of both femora of New Zealand male rabbits. The wounds were then repaired using both chondrocytes seeded on the biomaterial and biomaterial alone. Controls were similarly treated but received either no treatment or implants of the delivery substance. Histologic samples from in and around the defect sites were examined 1, 3 and 6 months after surgery and were scored from 0 to 16. Statistically significant differences in the quality of the regenerated tissue were found between the grafts carried out with biomaterial carrying chondrocyte cells compared to the biomaterial alone or controls. This study demonstrates the efficacy of this hyaluronan-based scaffold for autologous chondrocytes transplantation.


Biomaterials | 1994

Stimulatory effect on bone formation exerted by a modified chitosan

R.A.A. Muzzarelli; Monica Mattioli-Belmonte; C. Tietz; R. Biagini; G. Ferioli; M.A. Brunelli; Milena Fini; Roberto Giardino; P. Ilari; G. Biagini

A novel modified chitosan carrying covalently linked imidazole groups (average molecular weight 700,000, degree of substitution 0.28, degree of acetylation 0.08) was used to stimulate bone formation in an animal model. Lesions (7 mm diameter) were surgically made in the femoral condyle of sheep and treated with the modified chitosan. Within 40 d after surgery, the neoformed tissue occluded the surgical hole and assumed a trabecular structure in the peripheral area of the lesion, while looking like a mineralization nodule in the central part in association with a fibrous component. In the control, no sign of osteoinduction or reparative process was observed and bone marrow was rich in adipocytes.


Acta Biomaterialia | 2008

Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response

Chiara Capuccini; Paola Torricelli; F. Sima; Elisa Boanini; C. Ristoscu; Barbara Bracci; G. Socol; Milena Fini; I.N. Mihailescu; Adriana Bigi

The increasing interest in strontium incorporation into biomaterials for hard tissue repair is justified by the growing evidence of its beneficial effect on bone. We successfully synthesized hydroxyapatite (HA) thin films with different extents of strontium substitution for calcium (0, 1, 3 or 7 at.%) by pulsed-laser deposition. The coatings displayed a granular surface and a good degree of crystallinity, which slightly diminished as strontium content increased. Osteoblast-like MG63 cells and human osteoclasts were cultured on the thin films up to 21 days. MG63 cells grown on the strontium-doped HA coatings displayed normal morphology, good proliferation and increased values of the differentiation parameters, whereas the number of osteoclasts was negatively influenced by the presence of strontium. The positive effect of the ion on bone cells was particularly evident in the case of coatings deposited from HA at relatively high strontium contents (3-7%), where significantly increased values of alkaline phosphatase activity, osteocalcin, type I collagen and osteoprotegerin/TNF-related activation-induced cytokine receptor ratio, and considerably reduced values of osteoclast proliferation, were observed.


Biomaterials | 2003

Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies

Marco Morra; Clara Cassinelli; Giovanna Cascardo; Patrick T. Cahalan; L Cahalan; Milena Fini; Roberto Giardino

Collagen was covalently linked to the surface of Titanium (Ti) by a surface modification process involving deposition of a thin film from hydrocarbon plasma followed by acrylic acid grafting. The composition and properties of surface-modified Ti were investigated by a number of surface sensitive techniques: XPS, ATR-IR, atomic force microscopy and AFM force-separation curves. In vitro tests were performed to check samples cytotoxicity and the behavior of osteoblast-like SaOS-2 cells. In vivo experiments involved 12 weeks implants in rabbit muscle as general biocompatibility assessment and 1-month implants in rabbit bone to evaluate the effect of surface modification on osteointegration rate. Results of XPS measurements show how surface chemistry is affected throughout each step of the surface modification process, finally leading to a complete and homogeneous collagen overlayer on top of the Ti samples. AFM data clearly display the modification of the surface topography and of the surface area of the samples as a consequence of the grafting and coupling process. AFM force-distance curves show that the interfacial structure responds by shrinking or swelling to variations of ionic force of the surrounding aqueous environment, suggesting that the aqueous interface of the biochemically modified Ti samples has enhanced degrees of freedom as compared to the inorganic surface of plain Ti. As to biological evaluations, the biochemically modified Ti samples are safe in terms of cytotoxicity and in vivo biocompatibility assessment. SaOS-2 cells growth rate is lower on collagen modified surfaces, and no significant difference is detected in terms of alkaline phosphatase production as compared to control Ti. Importantly, implants in rabbit femur show a significant increase of bone growth and bone-to-implant contact in the case of the collagen modified samples, confirming that biochemical modifications of Ti surface can enhance the rate of bone healing as compared to plain Ti.


Biomaterials | 1999

In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium

Milena Fini; Alberto Cigada; G. Rondelli; Roberto Chiesa; Roberto Giardino; Gianluca Giavaresi; Nicolò Nicoli Aldini; Paola Torricelli; B. Vicentini

The influence of different surface preparations on titanium biocompatibility and bone integration was evaluated. Commercially grade 2 titanium rods (diameter 2 mm, length: 3 mm), vacuum annealed and hydrofluoric acid etched was selected for its promising surface characteristics to achieve good direct osseointegration. Some rods were surface modified by Anodic Spark Discharge anodization and a thin layer (approximately 5 microm) of amorphous TiO2 containing Ca and P (Ti/AM) was obtained. Some of the Ti/AM specimens underwent a further hydrothermal treatment to produce a thin outermost layer (approximately 1 microm) of hydroxyapatite (Ti/AM/HA). Cytotoxicity tests (direct contact: ISO 10993-5) showed good cytocompatibility for all tested samples. Ti and tissue culture substrate + DMEM control, respectively, were associated with a significant higher proportion of attached cells than Ti/AM and Ti/AM/HA (P < 0.0005), but this was in the normal range of 10-20% of unattached cells for cytocompatible materials. Histomorphometric analysis conducted on samples inserted in the cancellous bone of distal femoral epiphysis of Sprague-Dawley rats gave the following results at 4 and 8 weeks: Affinity index (AI%) data proving the surface osteconductive properties of non-anodized acid etched Ti (AI-4 weeks: 67.1 +/- 17.0%; AI-8 weeks: 74.8 +/- 11.5%). Ti/AM samples showed the lowest values (AI-4 weeks: 45.8 +/- 15.9%; AI-8 weeks: 68.5 +/- 13.6%) while the best performances of the Ti/AM/HA samples (AI-4 weeks: 60.4 +/- 21.8%; AI-8 weeks: 79.5 + 9.37%) indicated that hydroxyapatite allowed a higher bone to implant contact respect to Ti only. Further investigations should be performed in order to better understand the mechanism of observed in vitro behaviour and to achieve information on long-term osseointegration process.


Biomaterials | 2002

Hyaluronic acid hydrogel in the treatment of osteoarthritis

Rolando Barbucci; Stefania Lamponi; Assunta Borzacchiello; Luigi Ambrosio; Milena Fini; Paola Torricelli; Roberto Giardino

In order to overcome the problem of rapid clearance of the polysaccharide hyaluronic acid (Hyal) in the treatment of osteoarthritis (OA), a 50% cross-linked Hyal hydrogel (Hyal 50%) was synthesised. The 50% refers to the amount of COOH groups of the polysaccharide involved in the cross-linking reaction. i.e. 50% of the total amount. The rheological behaviour of the Hyal 50% hydrogel, and in particular the possibility to inject it through a needle, was studied. The results obtained demonstrated that the hydrogel injected through the needle still behaved like a gel, although it showed a reduction of the dynamic moduli. The most appropriate sterilisation technique for this kind of hydrogel was also evaluated. Liophilised Hyal 50% samples were sterilised by steam, Ethylene Oxide (EtO) and gamma-rays. EtO and gamma-rays did not modify the characteristics of the hydrogel in terms of swellability and morphology. Lastly, the in vivo effect of Hyal 50% hydrogel in the treatment of chondral defect in rabbit knee was also studied. The results obtained showed the Hyal 50% injections improved chondrocytes density and matrix appearance. Furthermore, the permanence in situ of the hydrogel was longer than that of the linear Hyal.


Journal of Orthopaedic Research | 2009

Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial.

Elizaveta Kon; Marco Delcogliano; Giuseppe Filardo; Milena Fini; Gianluca Giavaresi; Silvia Francioli; Ivan Martin; D. Pressato; Elena Arcangeli; Rodolfo Quarto; Monica Sandri; M. Marcacci

The objective of this article was to investigate the safety and regenerative potential of a newly developed biomimetic scaffold when applied to osteochondral defects in an animal model. A new multilayer gradient nano‐composite scaffold was obtained by nucleating collagen fibrils with hydroxyapatite nanoparticles. In the femoral condyles of 12 sheep, 24 osteochondral lesions were created. Animals were randomized into three treatment groups: scaffold alone, scaffold colonized in vitro with autologous chondrocytes and empty defects. Six months after surgery, the animals were sacrificed and the lesions were histologically evaluated. Histologic and gross evaluation of specimens showed good integration of the chondral surface in all groups except for the control group. Significantly better bone regeneration was observed both in the group receiving the scaffold alone and in the group with scaffold loaded with autologous chondrocytes. No difference in cartilage surface reconstruction and osteochondral defect filling was noted between cell‐seeded and cell‐free groups. In the control group, no bone or cartilage defect healing occurred, and the defects were filled with fibrous tissue. Quantitative macroscopic and histological score evaluations confirmed the qualitative trends observed. The results of the present study showed that this novel osteochondral scaffold is safe and easy to use, and may represent a suitable matrix to direct and coordinate the process of bone and hyaline‐like cartilage regeneration. The comparable regeneration process observed with or without autologous chondrocytes suggests that the main mode of action of the scaffold is based on the recruitment of local cells.


Osteoporosis International | 2002

Proximal Femur Geometry To Detect and Distinguish Femoral Neck Fractures from Trochanteric Fractures in Postmenopausal Women

Gnudi S; C. Ripamonti; Lucia Lisi; Milena Fini; Roberto Giardino; Gianluca Giavaresi

Abstract: Some proximal femur geometry (PFG) parameters, measured by dual-energy X-ray absorptiometry (DXA), have been reported to discriminate subjects with hip fracture. Relatively few studies have tested their ability to discriminate femoral neck fractures from those of the trochanter. To this end we performed a cross-sectional study in a population of 547 menopausal women over 69 years of age with femoral neck fractures (n= 88), trochanteric fractures (n= 93) or controls (n= 366). Hip axis length (HAL), neck–shaft angle (NSA), femoral neck diameter (FND) and femoral shaft diameter (FSD) were measured by DXA, as well as the bone mineral density (BMD) of the nonfractured hip at the femoral neck, trochanter and Ward’s triangle. In fractured subjects, BMD was lower at each measurement site. HAL was longer and NSA wider in those with femoral neck fractures. With logistic regression the age-adjusted odds ratio (OR) for a 1 standard deviation (SD) decrease in BMD was significantly associated at each measurement site with femoral neck fracture (femoral neck BMD: OR 1.9, 95% confidence interval (95% CI): 1.4–2.5; trochanter BMD: OR 1.6, 95% CI 1.2–2.0; Ward’s triangle BMD: OR 1.7, 95% CI 1.3–2.2) and trochanteric fracture (femoral neck BMD: OR 2.6, 95% CI 1.9–3.6; trochanter BMD: OR 3.0, 95% CI 2.2–4.1; Ward’s triangle BMD: OR 1.8, 95% CI 1.4–2.3). Age-adjusted OR for 1 SD increases in NSA (OR 2.2, 95% CI 1.7–2.8) and HAL (OR 1.3, 95% CI 1.1–1.6) was significantly associated with the fracture risk only for femoral neck fracture. In the best predictive model the strongest predictors were site-matched BMD for both fracture types and NSA for neck fracture. Trochanteric BMD had the greatest area (0.78, standard error (SE) 0.02) under the receiver operating characteristic curve in trochanteric fractures, whereas for NSA (0.72, SE 0.03) this area was greatest in femoral neck fractures. These results confirm the association of BMD with proximal femur fracture and support the evidence that PFG plays a significant role only in neck fracture prediction, since NSA is the best predictive parameter among those tested.


Biomaterials | 1996

Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves

N. Nicoli Aldini; Gabriele Perego; Gian Domenico Cella; Maria Cristina Maltarello; Milena Fini; M. Rocca; Roberto Giardino

A new conduit made with a bioabsorbable copolymer, poly (L-lactide-co-6-caprolactone), was evaluated in an animal model as a guide for nerve regeneration. The conduit had an inner diameter of 1.3 mm and a wall thickness of 175 microns. Segments of length 1.2 cm were interposed between the proximal and distal stumps of transected ischiatic nerves in Wistar rats, bridging a nerve gap of 1 cm. All of the procedure was performed under general anaesthesia using microsurgical techniques. Controls were performed at 1, 3 and 6 months and it was demonstrated that the conduit was still undamaged after 30 d. Progressive signs of degradation appeared at 90 and 180 d. Nerve regeneration in the lumen was effective as confirmed by histological and electron microscopical investigations. These preliminary results emphasize the interesting properties of the conduit with regard to the achievement of a neural prosthesis.


Journal of Biomaterials Science-polymer Edition | 2004

Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies

Antonella Motta; Claudio Migliaresi; F. Faccioni; Paola Torricelli; Milena Fini; Roberto Giardino

Silk fibroin hydrogels prepared either by treating a 2% (w/v) silk fibroin aqeuous solution at 4°C (thermgel) or by adding 30% (v/v) of glycerol (glygel), were characterized by using Environmental Scanning Electron Microscopy (ESEM), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermogravimetrical Analysis (TGA) and molecular weight determination. The preparation procedure affected morphology and molecular weight of hydrogels, with no or negligible differences being displayed by FT-IR and DSC analyses. While thermgel presented a well uniform porous structure, the morphology of glygel appeared to be non-porous and heterogeneous. Glygel presented lower water content and lower degradation temperatures, associated with the presence of glycerol but likely also to less-organized protein structures. Cytoxicity tests with human osteoblast-like cells indicated that both gels were not cytoxic, while cell cultures pointed out a faster cell proliferation on glygel and a higher cell activation and differentiation on thermgel. These gels could be used as scaffolds able to promote in situ bone regeneration.

Collaboration


Dive into the Milena Fini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Rocca

University of Bologna

View shared research outputs
Top Co-Authors

Avatar

Matilde Tschon

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge