Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agneta Nordberg is active.

Publication


Featured researches published by Agneta Nordberg.


Annals of Neurology | 2004

Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B

William E. Klunk; Henry Engler; Agneta Nordberg; Yanming Wang; Gunnar Blomqvist; Daniel P. Holt; Mats Bergström; Irina Savitcheva; Guo Feng Huang; Sergio Estrada; Birgitta Ausén; Manik L. Debnath; Julien Barletta; Julie C. Price; Johan Sandell; Brian J. Lopresti; Anders Wall; Pernilla Koivisto; Gunnar Antoni; Chester A. Mathis; Bengt Långström

This report describes the first human study of a novel amyloid‐imaging positron emission tomography (PET) tracer, termed Pittsburgh Compound‐B (PIB), in 16 patients with diagnosed mild AD and 9 controls. Compared with controls, AD patients typically showed marked retention of PIB in areas of association cortex known to contain large amounts of amyloid deposits in AD. In the AD patient group, PIB retention was increased most prominently in frontal cortex (1.94‐fold, p = 0.0001). Large increases also were observed in parietal (1.71‐fold, p = 0.0002), temporal (1.52‐fold, p = 0.002), and occipital (1.54‐fold, p = 0.002) cortex and the striatum (1.76‐fold, p = 0.0001). PIB retention was equivalent in AD patients and controls in areas known to be relatively unaffected by amyloid deposition (such as subcortical white matter, pons, and cerebellum). Studies in three young (21 years) and six older healthy controls (69.5 ± 11 years) showed low PIB retention in cortical areas and no significant group differences between young and older controls. In cortical areas, PIB retention correlated inversely with cerebral glucose metabolism determined with 18F‐fluorodeoxyglucose. This relationship was most robust in the parietal cortex (r = −0.72; p = 0.0001). The results suggest that PET imaging with the novel tracer, PIB, can provide quantitative information on amyloid deposits in living subjects.


Journal of Internal Medicine | 2004

Mild cognitive impairment : beyond controversies, towards a consensus : report of the International Working Group on Mild Cognitive Impairment

Bengt Winblad; K. Palmer; Miia Kivipelto; Vesna Jelic; Laura Fratiglioni; L.-O. Wahlund; Agneta Nordberg; Lars Bäckman; Marilyn S. Albert; Ove Almkvist; Hiroyuki Arai; Hans Basun; Kaj Blennow; M. J. de Leon; Charles DeCarli; T. Erkinjuntti; Ezio Giacobini; Caroline Graff; John Hardy; Clifford R. Jack; Anthony F. Jorm; Karen Ritchie; C. M. van Duijn; Pieter Jelle Visser; R. C. Petersen

The First Key Symposium was held in Stockholm, Sweden, 2–5 September 2003. The aim of the symposium was to integrate clinical and epidemiological perspectives on the topic of Mild Cognitive Impairment (MCI). A multidisciplinary, international group of experts discussed the current status and future directions of MCI, with regard to clinical presentation, cognitive and functional assessment, and the role of neuroimaging, biomarkers and genetics. Agreement on new perspectives, as well as recommendations for management and future research were discussed by the international working group. The specific recommendations for the general MCI criteria include the following: (i) the person is neither normal nor demented; (ii) there is evidence of cognitive deterioration shown by either objectively measured decline over time and/or subjective report of decline by self and/or informant in conjunction with objective cognitive deficits; and (iii) activities of daily living are preserved and complex instrumental functions are either intact or minimally impaired.


Lancet Neurology | 2014

Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria

Bruno Dubois; Howard Feldman; Claudia Jacova; Harald Hampel; José Luis Molinuevo; Kaj Blennow; Steven T. DeKosky; Serge Gauthier; Dennis J. Selkoe; Randall J. Bateman; Stefano F. Cappa; Sebastian J. Crutch; Sebastiaan Engelborghs; Giovanni B. Frisoni; Nick C. Fox; Douglas Galasko; Marie Odile Habert; Gregory A. Jicha; Agneta Nordberg; Florence Pasquier; Gil D. Rabinovici; Philippe Robert; Christopher C. Rowe; Stephen Salloway; Marie Sarazin; Stéphane Epelbaum; Leonardo Cruz de Souza; Bruno Vellas; Pieter J. Visser; Lon S. Schneider

In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimers Association have contributed criteria for the diagnosis of Alzheimers disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimers pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD.


Progress in Neurobiology | 2000

Neuronal nicotinic receptors in the human brain.

David Paterson; Agneta Nordberg

Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of ligand gated ion channels which are widely distributed in the human brain. Multiple subtypes of these receptors exist, each with individual pharmacological and functional profiles. They mediate the effects of nicotine, a widely used drug of abuse, are involved in a number of physiological and behavioural processes and are additionally implicated in a number of pathological conditions such as Alzheimers disease, Parkinsons disease and schizophrenia. The nAChRs have a pentameric structure composed of five membrane spanning subunits, of which nine different types have thus far been identified and cloned. The multiple subunits identified provide the basis for the heterogeneity of structure and function observed in the nAChR subtypes and are responsible for the individual characteristics of each. A substantial amount of information on human nAChR structure and function has come from studies on neuroblastoma cell lines which naturally express nAChRs and from recombinant nAChRs expressed in Xenopus oocytes. In vitro brain nAChR distribution can be mapped with a number of appropriate agonist and antagonist radioligands and subunit distribution may be mapped by in situ hybridization using subunit specific mRNA probes. Receptor distribution in the living human brain can be studied with noninvasive imaging techniques such as PET and SPECT, with a significant reduction in nAChRs in the brains of Alzheimers patients having been identified with [11C] nicotine in PET studies. Despite the significant body of knowledge now accumulated about nAChRs, much remains to be elucidated. This review will attempt to describe the current knowledge on the nAChR subtypes in the human brain, their functional roles and neuropathological involvement.


Neurobiology of Aging | 2008

PET imaging of amyloid deposition in patients with mild cognitive impairment

Anton Forsberg; Henry Engler; Ove Almkvist; Gunnar Blomquist; Göran Hagman; Anders Wall; Anna Ringheim; Bengt Långström; Agneta Nordberg

It is of great clinical value to identify subjects at a high risk of developing AD. We previously found that the amyloid positron emission tomography (PET) tracer PIB showed a robust difference in retention in the brain between AD patients and healthy controls (HC). Twenty-one patients diagnosed with MCI (mean age 63.3+/-7.8 (S.D.) years) underwent PET studies with (11)C-PIB, and (18)F-fluoro-deoxy-glucose (FDG) to measure cerebral glucose metabolism, as well as assessment of cognitive function and CSF sampling. Reference group data from 27 AD patients and 6 healthy controls, respectively, were used for comparison. The mean cortical PIB retention for the MCI patients was intermediate compared to HC and AD. Seven MCI patients that later at clinical follow-up converted to AD (8.1+/-6.0 (S.D.) months) showed significant higher PIB retention compared to non-converting MCI patients and HC, respectively (ps<0.01). The PIB retention in MCI converters was comparable to AD patients (p>0.01). Correlations were observed in the MCI patients between PIB retention and CSF Abeta(1-42), total Tau and episodic memory, respectively.


Dementia and Geriatric Cognitive Disorders | 1998

Intracerebroventricular Infusion of Nerve Growth Factor in Three Patients with Alzheimer’s Disease

Maria Eriksdotter Jönhagen; Agneta Nordberg; Kaarina Amberla; Lars Bäckman; Ted Ebendal; Björn A. Meyerson; Lars Olson; Åke Seiger; Masahiro Shigeta; Elvar Theodorsson; Matti Viitanen; Bengt Winblad; Lars-Olof Wahlund

Nerve growth factor (NGF) is important for the survival and maintenance of central cholinergic neurons, a signalling system impaired in Alzheimer’s disease. We have treated 3 patients with Alzheimer’s disease with a total of 6.6 mg NGF administered continuously into the lateral cerebral ventricle for 3 months in the first 2 patients and a total of 0.55 mg for 3 shorter periods in the third patient. The patients were extensively evaluated with clinical, neuropsychological, neurophysiological and neuroradiological techniques. Three months after the NGF treatment ended, a significant increase in nicotine binding was found in several brain areas in the first 2 patients and in the hippocampus in the third patient as studied by positron emission tomography. A clear cognitive amelioration could not be demonstrated, although a few neuropsychology tests showed slight improvements. The amount of slow-wave cortical activity as studied by electroencephalography was reduced in the first 2 patients. Two negative side effects occurred with NGF treatment: first, a dull, constant back pain was observed in all 3 patients, which in 1 patient was aggravated by axial loading resulting in sharp, shooting pain of short duration. When stopping the NGF infusion, the pain disappeared within a couple of days. Reducing the dose of NGF lessened the pain. Secondly, a marked weight reduction during the infusion with a clear weight gain after ending the infusion was seen in the first 2 patients. We conclude from this limited trial that, while long-term intracerebroventricular NGF administration may cause certain potentially beneficial effects, the intraventricular route of administration is also associated with negative side effects that appear to outweigh the positive effects of the present protocol. Alternative routes of administration, and/or lower doses of NGF, perhaps combined with low doses of other neurotrophic factors, may shift this balance in favor of positive effects.


Lancet Neurology | 2004

PET imaging of amyloid in Alzheimer's disease

Agneta Nordberg

Alzheimers disease (AD) is the most common form of dementia and is characterised by progressive impairment in cognitive function and behaviour. The pathological features of AD include neuritic plaques composed of amyloid-beta peptide (Abeta) fibrils, neurofibrillary tangles of hyperphosphorylated tau, and neurotransmitter deficits. Increases in the concentration of Abeta in the course of the disease with subtle effects on synaptic efficacy will lead to gradual increase in the load of amyloid plaques and progression in cognitive impairment. Direct imaging of amyloid load in patients with AD in vivo would be very useful for the early diagnosis of AD and the development and assessment of new treatment strategies. Three different strategies are being used to develop compounds suitable for in vivo imaging of amyloid deposits in human brains. Monoclonal antibodies against Abeta and peptide fragments have had limited uptake by the brain when tested in patients with AD. When putrescine-gadolinium-Abeta has been injected into transgenic mice overexpressing amyloid, labelling has been observed with MRI. The small molecular approach for amyloid imaging has so far been most successful. The binding of different derivatives of Congo red and thioflavin has been studied in human autopsy brain tissue and in transgenic mice. Two compounds, fluorine-18-labelled-FDDNP and carbon-11-labelled-PIB, both show more binding in the brains of patients with AD than in those of healthy people. Additional compounds will probably be developed that are suitable not only for PET but also for single photon emission CT (SPECT).


Biological Psychiatry | 2001

Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications

Agneta Nordberg

The neuronal nicotinic acetylcholine receptors (nAChRs) in the brain are important for functional processes, including cognitive and memory functions. The nAChRs acting as neuromodulators in communicative processes regulated by different neurotransmitters show a relatively high abundance in the human cortex, with a laminar distribution of the nAChRs of superhigh, high, and low affinity in the human cortex. The regional pattern of messenger RNA (mRNA) for various nAChR subtypes does not strictly follow the regional distribution of nAChR ligand-binding sites in the human brain. Consistent losses of nAChRs have been measured in vitro in autopsy brain tissue of Alzheimers disease patients (AD), as well as in vivo by positron emission tomography (PET). Measurement of the protein content of nAChRs showed reduced levels of the alpha4, alpha3, and alpha7 nAChR subtypes. The finding that the alpha4 and alpha3 mRNA levels were not changed in AD brains suggests that the losses in high-affinity nicotinic-binding sites cannot be attributed to alterations at the transcriptional level of the alpha4 and alpha3 genes and that the causes have to be searched for at the translational and/or posttranslational level. The increased mRNA level of the alpha7 nAChR subtyep in the hippocampus indicates that subunit-specific changes in gene expression of the alpha7 nAChR might be associated with AD. The PET studies reveal deficits in nAChRs as an early phenomena in AD, stressing the importance of nAChRs as a potential target for drug intervention. PET ligands measuring the alpha4 nAChRs are under development. Studies of the influence of beta-amyloid on nAChRs in brain autopsy tissue from patients with the amyloid precursor protein 670/671 mutation have shown that there is no direct relationship between nAChR deficits and pathology. Treatment with cholinergic drugs in AD patients indicate improvement of the nAChRs in the brain, as visualized by PET. Further studies on neuroprotective mechanisms mediated via nAChR subtypes are exciting new avenues.


Neurobiology of Aging | 2000

Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease

Vesna Jelic; S.-E. Johansson; Ove Almkvist; Masahiro Shigeta; Per Julin; Agneta Nordberg; Bengt Winblad; Lars-Olof Wahlund

The present study evaluated the clinical course of patients with mild cognitive impairment (MCI), the pattern of electroencephalography (EEG) changes following cognitive deterioration, as well as the potential of neurophysiological measures in predicting dementia. Twenty-seven subjects with MCI were followed for a mean follow up period of 21 months. Fourteen subjects (52%) progressed (P MCI) to clinically manifest Alzheimers disease (AD), and 13 (48%) remained stable (S MCI). The two MCI subgroups did not differ in baseline EEG measures between each other and the healthy controls (n = 16), but had significantly lower theta relative power at left temporal, temporo-occipital, centro-parietal, and right temporo-occipital derivation when compared to the reference AD group (n = 15). The P MCI baseline alpha band temporo-parietal coherence, alpha relative power values at left temporal and temporo-occipital derivations, theta relative power values at frontal derivations, and the mean frequency at centro-parietal and temporo-occipital derivations overlapped with those for AD and control groups. After the follow-up, the P MCI patients had significantly higher theta relative power and lower beta relative power and mean frequency at the temporal and temporo-occipital derivations. A logistic regression model of baseline EEG values adjusted for baseline Mini-Mental Test Examination showed that the important predictors were alpha and theta relative power and mean frequency from left temporo-occipital derivation (T5-O1), which classified 85% of MCI subjects correctly.


Lancet Neurology | 2016

Defeating Alzheimer's disease and other dementias: a priority for European science and society

Bengt Winblad; Philippe Amouyel; Sandrine Andrieu; Clive Ballard; Carol Brayne; Henry Brodaty; Angel Cedazo-Minguez; Bruno Dubois; David Edvardsson; Howard Feldman; Laura Fratiglioni; Giovanni B. Frisoni; Serge Gauthier; Jean Georges; Caroline Graff; Khalid Iqbal; Frank Jessen; Gunilla Johansson; Linus Jönsson; Miia Kivipelto; Martin Knapp; Francesca Mangialasche; René J. F. Melis; Agneta Nordberg; Marcel G. M. Olde Rikkert; Chengxuan Qiu; Thomas P. Sakmar; Philip Scheltens; Lon S. Schneider; Reisa A. Sperling

Defeating Alzheimers disease and other dementias : a priority for European science and society

Collaboration


Dive into the Agneta Nordberg's collaboration.

Top Co-Authors

Avatar

Ove Almkvist

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge