Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders Wall is active.

Publication


Featured researches published by Anders Wall.


Annals of Neurology | 2004

Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B

William E. Klunk; Henry Engler; Agneta Nordberg; Yanming Wang; Gunnar Blomqvist; Daniel P. Holt; Mats Bergström; Irina Savitcheva; Guo Feng Huang; Sergio Estrada; Birgitta Ausén; Manik L. Debnath; Julien Barletta; Julie C. Price; Johan Sandell; Brian J. Lopresti; Anders Wall; Pernilla Koivisto; Gunnar Antoni; Chester A. Mathis; Bengt Långström

This report describes the first human study of a novel amyloid‐imaging positron emission tomography (PET) tracer, termed Pittsburgh Compound‐B (PIB), in 16 patients with diagnosed mild AD and 9 controls. Compared with controls, AD patients typically showed marked retention of PIB in areas of association cortex known to contain large amounts of amyloid deposits in AD. In the AD patient group, PIB retention was increased most prominently in frontal cortex (1.94‐fold, p = 0.0001). Large increases also were observed in parietal (1.71‐fold, p = 0.0002), temporal (1.52‐fold, p = 0.002), and occipital (1.54‐fold, p = 0.002) cortex and the striatum (1.76‐fold, p = 0.0001). PIB retention was equivalent in AD patients and controls in areas known to be relatively unaffected by amyloid deposition (such as subcortical white matter, pons, and cerebellum). Studies in three young (21 years) and six older healthy controls (69.5 ± 11 years) showed low PIB retention in cortical areas and no significant group differences between young and older controls. In cortical areas, PIB retention correlated inversely with cerebral glucose metabolism determined with 18F‐fluorodeoxyglucose. This relationship was most robust in the parietal cortex (r = −0.72; p = 0.0001). The results suggest that PET imaging with the novel tracer, PIB, can provide quantitative information on amyloid deposits in living subjects.


Neurobiology of Aging | 2008

PET imaging of amyloid deposition in patients with mild cognitive impairment

Anton Forsberg; Henry Engler; Ove Almkvist; Gunnar Blomquist; Göran Hagman; Anders Wall; Anna Ringheim; Bengt Långström; Agneta Nordberg

It is of great clinical value to identify subjects at a high risk of developing AD. We previously found that the amyloid positron emission tomography (PET) tracer PIB showed a robust difference in retention in the brain between AD patients and healthy controls (HC). Twenty-one patients diagnosed with MCI (mean age 63.3+/-7.8 (S.D.) years) underwent PET studies with (11)C-PIB, and (18)F-fluoro-deoxy-glucose (FDG) to measure cerebral glucose metabolism, as well as assessment of cognitive function and CSF sampling. Reference group data from 27 AD patients and 6 healthy controls, respectively, were used for comparison. The mean cortical PIB retention for the MCI patients was intermediate compared to HC and AD. Seven MCI patients that later at clinical follow-up converted to AD (8.1+/-6.0 (S.D.) months) showed significant higher PIB retention compared to non-converting MCI patients and HC, respectively (ps<0.01). The PIB retention in MCI converters was comparable to AD patients (p>0.01). Correlations were observed in the MCI patients between PIB retention and CSF Abeta(1-42), total Tau and episodic memory, respectively.


The Journal of Nuclear Medicine | 2012

Evidence for Astrocytosis in Prodromal Alzheimer Disease Provided by 11C-Deuterium-L-Deprenyl: A Multitracer PET Paradigm Combining 11C-Pittsburgh Compound B and 18F-FDG

Stephen F. Carter; Michael Schöll; Ove Almkvist; Anders Wall; Henry Engler; Bengt Långström; Agneta Nordberg

Astrocytes colocalize with fibrillar amyloid-β (Aβ) plaques in postmortem Alzheimer disease (AD) brain tissue. It is therefore of great interest to develop a PET tracer for visualizing astrocytes in vivo, enabling the study of the regional distribution of both astrocytes and fibrillar Aβ. A multitracer PET investigation was conducted for patients with mild cognitive impairment (MCI), patients with mild AD, and healthy controls using 11C-deuterium-L-deprenyl (11C-DED) to measure monoamine oxidase B located in astrocytes. Along with 11C-DED PET, 11C-Pittsburgh compound B (11C-PIB; fibrillar Aβ deposition), 18F-FDG (glucose metabolism), T1 MRI, cerebrospinal fluid, and neuropsychologic data were acquired from the patients. Methods: 11C-DED PET was performed in MCI patients (n = 8; mean age ± SD, 62.6 ± 7.5 y; mean Mini Mental State Examination, 27.5 ± 2.1), AD patients (n = 7; mean age, 65.1 ± 6.3 y; mean Mini Mental State Examination, 24.4 ± 5.7), and healthy age-matched controls (n = 14; mean age, 64.7 ± 3.6 y). A modified reference Patlak model, with cerebellar gray matter as a reference, was chosen for kinetic analysis of the 11C-DED data. 11C-DED data from 20 to 60 min were analyzed using a digital brain atlas. Mean regional 18F-FDG uptake and 11C-PIB retention were calculated for each patient, with cerebellar gray matter as a reference. Results: ANOVA analysis of the regional 11C-DED binding data revealed a significant group effect in the bilateral frontal and bilateral parietal cortices related to increased binding in the MCI patients. All patients, except 3 with MCI, showed high 11C-PIB retention. Increased 11C-DED binding in most cortical and subcortical regions was observed in MCI 11C-PIB+ patients relative to controls, MCI 11C-PIB (negative) patients, and AD patients. No regional correlations were found between the 3 PET tracers. Conclusion: Increased 11C-DED binding throughout the brain of the MCI 11C-PIB+ patients potentially suggests that astrocytosis is an early phenomenon in AD development.


Psychopharmacology | 2006

PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer´s disease.

Ahmadul Kadir; Ove Almkvist; Anders Wall; Bengt Långström; Agneta Nordberg

RationalePatients suffering from Alzheimer’s disease (AD) experience a marked reduction in cortical nicotinic acetylcholine receptors (nAChRs). In particular, selective loss of the α4β2 nAChR subtype was observed in postmortem AD brain tissue. The α4 and α7 nAChR subunits were suggested to play an important role in cognitive function. Positron emission tomography (PET) has so far been used to visualize neuronal nAChRs in vivo by 11C-nicotine binding.ObjectivesTo investigate the relationship between measures of cognitive function and in vivo 11C-nicotine binding in mild AD brain as assessed by PET.Materials and methodsTwenty-seven patients with mild AD were recruited in this study. A dual tracer model with administration of 15O-water for regional cerebral blood flow and (S)(−)11C-nicotine was used to assess nicotine binding sites in the brain by PET. Cognitive function was assessed using neuropsychological tests of global cognition, episodic memory, attention, and visuospatial ability.ResultsMean cortical 11C-nicotine binding significantly correlated with the results of attention tests [Digit Symbol test (r=−0.44 and p=0.02) and Trail Making Test A (TMT-A) (r=0.42 and p=0.03)]. No significant correlation was observed between 11C-nicotine binding and the results of tests of episodic memory or visuospatial ability. Regional analysis showed that 11C-nicotine binding in the frontal and parietal cortex, which are the main areas for attention, correlated significantly with the Digit Symbol test and TMT-A results.ConclusionCortical nicotinic receptors in vivo in mild AD patients are robustly associated with the cognitive function of attention.


Neurobiology of Aging | 2012

Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease

Ahmadul Kadir; Ove Almkvist; Anton Forsberg; Anders Wall; Henry Engler; Bengt Långström; Agneta Nordberg

In this study 5 patients with mild cognitive impairment (MCI) and 9 Alzheimers disease (AD) patients underwent respectively 3- and 5-year follow-up positron emission tomography (PET) studies with N-methyl [(11)C] 2-(4-methylaminophenyl)-6-hydroxy-benzothiazole ((11)C-PIB) and (18)F-fluorodeoxyglucose ((18)F-FDG) to understand the time courses in AD disease processes. Significant increase in PIB retention as well as decrease in regional cerebral metabolic rate of glucose (rCMRglc) was observed at group level in the MCI patients while no significant change was observed in cognitive function. At group level the AD patients showed unchanged high PIB retention at 5-year follow-up compared with baseline. At the individual level, increased, stable, and decreased PIB retention were observed while disease progression was reflected in significant decrease in rCMRglc and cognition. In conclusion, after a long-term follow-up with PET, we observed an increase in fibrillar amyloid load in MCI patients followed by more stable level in clinical AD patients. The rCMRglc starts to decline in MCI patients and became more pronounced in clinical stage which related to continuous decline in cognition.


Neurology | 2013

Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease

Annapaola Prestia; Anna Caroli; Wiesje M. van der Flier; Rik Ossenkoppele; Bart N.M. van Berckel; Frederik Barkhof; Charlotte E. Teunissen; Anders Wall; Stephen F. Carter; Michael Schöll; Il Han Choo; Agneta Nordberg; Philip Scheltens; Giovanni B. Frisoni

Objectives: The current model of Alzheimer disease (AD) stipulates that brain amyloidosis biomarkers turn abnormal earliest, followed by cortical hypometabolism, and finally brain atrophy ones. The aim of this study is to provide clinical evidence of the model in patients with mild cognitive impairment (MCI). Methods: A total of 73 patients with MCI from 3 European memory clinics were included. Brain amyloidosis was assessed by CSF Aβ42 concentration, cortical metabolism by an index of temporoparietal hypometabolism on FDG-PET, and brain atrophy by automated hippocampal volume. Patients were divided into groups based on biomarker positivity: 1) Aβ42− FDG-PET− Hippo−, 2) Aβ42+ FDG-PET− Hippo−, 3) Aβ42 + FDG-PET + Hippo−, 4) Aβ42 + FDG-PET+ Hippo+, and 5) any other combination not in line with the model. Measures of validity were prevalence of group 5, increasing incidence of progression to dementia with increasing biological severity, and decreasing conversion time. Results: When patients with MCI underwent clinical follow-up, 29 progressed to dementia, while 44 remained stable. A total of 26% of patients were in group 5. Incident dementia was increasing with greater biological severity in groups 1 to 5 from 4% to 27%, 64%, and 100% (p for trend < 0.0001), and occurred increasingly earlier (p for trend = 0.024). Conclusions: The core biomarker pattern is in line with the current pathophysiologic model of AD. Fully normal and fully abnormal pattern is associated with exceptional and universal development of dementia. Cases not in line might be due to atypical neurobiology or inaccurate thresholds for biomarker (ab)normality.


Annals of Neurology | 2008

Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease

Ahmadul Kadir; Niels Andreasen; Ove Almkvist; Anders Wall; Anton Forsberg; Henry Engler; Göran Hagman; Marie Lärksäter; Bengt Winblad; Henrik Zetterberg; Kaj Blennow; Bengt Långström; Agneta Nordberg

The effects of (−)‐phenserine (phenserine) and placebo/donepezil treatment on regional cerebral metabolic rate for glucose (rCMRglc) and brain amyloid load were investigated by positron emission tomography in 20 patients with mild Alzheimers disease in relation to cerebrospinal fluid (CSF) and plasma biomarkers, and cognitive function.


Current Alzheimer Research | 2009

High PIB Retention in Alzheimer's Disease is an Early Event with Complex Relationship with CSF Biomarkers and Functional Parameters

Anton Forsberg; Ove Almkvist; Henry Engler; Anders Wall; Bengt Långström; Agneta Nordberg

BACKGROUND New in vivo amyloid PET imaging tracers, such as (11)C-PIB, provide possibilities to deeper understand the underlying pathological processes in Alzheimers disease (AD). In this study we investigated how (11)C-PIB retention is related to cerebral glucose metabolism, episodic memory and CSF biomarkers. METHOD Thirty-seven patients with mild AD and 21 patients with mild cognitive impairment (MCI) underwent PET examinations with the amyloid tracer (11)C-PIB, (18)F-FDG for measurement of regional cerebral metabolic rate of glucose (rCMRglc), assessment of episodic memory and assay of cerebral spinal fluid (CSF) levels of amyloid-beta (Abeta(1-42)), total tau and phosphorylated tau respectively. Analyses were performed using Statistical Parametric Mapping (SPM) and regions of interest (ROIs). RESULTS Pooled data from AD and MCI patients showed strong correlations between (11)C-PIB retention, levels of CSF biomarkers (especially Abeta(1-42)), rCMRglc and episodic memory. Analysis of the MCI group alone revealed significant correlations between (11)C-PIB retention and CSF biomarkers and between CSF biomarkers and episodic memory respectively. A strong correlation was observed in the AD group between rCMRglc and episodic memory as well as a significant correlation between (11)C-PIB retention and rCMRglc in some cortical regions. Regional differences were observed as sign for changes in temporal patterns across brain regions. CONCLUSIONS A complex pattern was observed between pathological and functional markers with respect to disease stage (MCI versus AD) and brain regions. Regional differences over time were evident during disease progression. (11)C-PIB PET and CSF Abeta(42) allowed detection of prodromal stages of AD. Amyloid imaging is useful for early diagnosis and evaluation of new therapeutic interventions in AD.


The Journal of Nuclear Medicine | 2010

Small-Molecule Biomarkers for Clinical PET Imaging of Apoptosis

Ayelet Reshef; Anat Shirvan; Ayelet Akselrod-Ballin; Anders Wall; Ilan Ziv

Apoptosis is a fundamental biologic process. Molecular imaging of apoptosis in vivo may have important implications for clinical practice, assisting in early detection of disease, monitoring of disease course, assessment of treatment efficacy, or development of new therapies. Although a PET probe for clinical imaging of apoptosis would be highly desirable, this is yet an unachieved goal, mainly because of the required challenging integration of various features, including sensitive and selective detection of the apoptotic cells, clinical aspects such as favorable biodistribution and safety profiles, and compatibility with the radiochemistry and imaging routines of clinical PET centers. Several approaches are being developed to address this challenge, all based on novel small-molecule structures targeting various steps of the apoptotic cascade. This novel concept of small-molecule PET probes for apoptosis is the focus of this review.


Journal of the Neurological Sciences | 2007

Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET.

Anders Johansson; Henry Engler; Gunnar Blomquist; Berit Scott; Anders Wall; Sten-Magnus Aquilonius; Bengt Långström; Håkan Askmark

OBJECTIVE To use deuterium-substituted [11C](L)-deprenyl PET to depict astrocytosis in vivo in patients with amyotrophic lateral sclerosis (ALS). BACKGROUND In human brain, the enzyme MAO-B is primarily located in astrocytes. L-deprenyl binds to MAO-B and autoradiography with 3H-L-deprenyl has been used to map astrocytosis in vitro. Motor neuron loss in ALS is accompanied by astrocytosis and astrocytes may play an active role in the neurodegenerative process. Deuterium-substituted [11C](L)-deprenyl PET provides an opportunity to localize astrocytosis in vivo in the brain of patients with ALS. METHODS Deuterium-substituted [11C](L)-deprenyl PET was performed in seven patients with ALS and seven healthy control subjects. RESULTS Increased uptake rate of [11C](L)-deprenyl was demonstrated in ALS in pons and white matter. CONCLUSION This study provides evidence that astrocytosis may be detected in vivo in ALS by the use of deuterium-substituted [11C](L)-deprenyl PET though further studies are needed to determine whether deuterium-substituted [11C](L)-deprenyl binding tracks disease progression and reflects astrocytosis.

Collaboration


Dive into the Anders Wall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Engler

Uppsala University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge