Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnieszka B. Bialkowska is active.

Publication


Featured researches published by Agnieszka B. Bialkowska.


Molecular Cancer Research | 2008

Notch inhibits expression of the Krüppel-like factor 4 tumor suppressor in the intestinal epithelium.

Amr M. Ghaleb; Gaurav Aggarwal; Agnieszka B. Bialkowska; Mandayam O. Nandan; Vincent W. Yang

The zinc finger-containing transcription factor, Krüppel-like factor 4 (KLF4), inhibits cell proliferation. An in vivo tumor-suppressive role for KLF4 is shown by the recent finding that Klf4 haploinsufficiency in ApcMin/+ mice promotes intestinal tumorigenesis. Studies also show that KLF4 is required for the terminal differentiation of goblet cells in the mouse intestine. The Notch signaling pathway suppresses goblet cell formation and is up-regulated in intestinal tumors. Here, we investigated the relationship between Notch signaling and KLF4 expression in intestinal epithelial cells. The rate of proliferation of HT29 human colon cancer cells was reduced when treated with the γ-secretase inhibitor dibenzazepine to inhibit Notch signaling or small interfering RNA directed against Notch. KLF4 levels were increased in dibenzazepine-treated or Notch small interfering RNA-treated cells. Conversely, overexpression of Notch in HT29 cells reduced KLF4 levels, suppressed KLF4 promoter activity, and increased proliferation rate. Treatment of ApcMin/+ mice with dibenzazepine resulted in a 50% reduction in the number of intestinal adenomas compared with the vehicle-treated group (P < 0.001). Both the normal-appearing intestinal mucosa and adenomas obtained from dibenzazepine-treated ApcMin/+ mice had increased goblet cell numbers and Klf4 staining accompanied by reduced cyclin D1 and Ki-67 staining when compared with those from vehicle-treated mice. Results of these studies indicate that Notch signaling suppresses KLF4 expression in intestinal tumors and colorectal cancer cells. Inhibition of Notch signaling increases KLF4 expression and goblet cell differentiation and reduces proliferation and tumor formation. KLF4 is therefore a potential mediator for the antitumor effect of Notch inhibitors such as dibenzazepine. (Mol Cancer Res 2008;6(12):1920–7)


Journal of Biological Chemistry | 2008

SUMOylation regulates nuclear localization of Kruppel-like factor 5.

James X. Du; Agnieszka B. Bialkowska; Beth B. McConnell; Vincent W. Yang

SUMOylation is a form of post-translational modification shown to control nuclear transport. Krüppel-like factor 5 (KLF5) is an important mediator of cell proliferation and is primarily localized to the nucleus. Here we show that mouse KLF5 is SUMOylated at lysine residues 151 and 202. Mutation of these two lysines or two conserved nearby glutamates results in the loss of SUMOylation and increased cytoplasmic distribution of KLF5, suggesting that SUMOylation enhances nuclear localization of KLF5. Lysine 151 is adjacent to a nuclear export signal (NES) that resembles a consensus NES. The NES in KLF5 directs a fused green fluorescence protein to the cytoplasm, binds the nuclear export receptor CRM1, and is inhibited by leptomycin and site-directed mutagenesis. SUMOylation facilitates nuclear localization of KLF5 by inhibiting this NES activity, and enhances the ability of KLF5 to stimulate anchorage-independent growth of HCT116 colon cancer cells. A survey of proteins whose nuclear localization is regulated by SUMOylation reveals that SUMOylation sites are frequently located in close proximity to NESs. A relatively common mechanism for SUMOylation to regulate nucleocytoplasmic transport may lie in the interplay between neighboring NES and SUMOylation motifs.


Journal of Biological Chemistry | 2007

Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Krüppel-like factor 5.

Huanchun Zhang; Agnieszka B. Bialkowska; Raluca Rusovici; Sengthong Chanchevalap; Hyunsuk Shim; Jonathan P. Katz; Vincent W. Yang; C. Chris Yun

Among the multiple cellular effects mediated by lysophosphatidic acid (LPA), the effect on cell proliferation has extensively been investigated. A recent study showed that LPA-mediated proliferation of colon cancer cells requires activation of β-catenin. However, the majority of colon cancer cells have deregulation of the Wnt/β-catenin pathway. This prompted us to hypothesize the presence of additional pathway(s) activated by LPA resulting in an increase in the proliferation of colon cancer cells. Krüppel-like factor 5 (KLF5) is a transcriptional factor highly expressed in the crypt compartment of the intestinal epithelium. In this work, we investigated a role of KLF5 in LPA-mediated proliferation. We show that LPA stimulated the expression levels of KLF5 mRNA and protein in colon cancer cells and this stimulation was mediated by LPA2 and LPA3. Silencing of KLF5 expression by small interfering RNA significantly attenuated LPA-mediated proliferation of SW480 and HCT116 cells. LPA-mediated KLF5 induction was partially blocked by inhibition of the mitogen-activated protein kinase kinase and protein kinase C-δ. Moreover, we observed that LPA regulates KLF5 expression via eukaryotic elongation factor 2 kinase (eEF2k). Inhibition of calmodulin or silencing of eEF2k blocked the stimulation in KLF5 expression. Knockdown of eEF2k specifically inhibited KLF5 induction by LPA but not by fetal bovine serum or phorbol 12-myristate 13-acetate. These results identify KLF5 as a target of LPA-mediated signaling and suggest a role of KLF5 in promoting proliferation of intestinal epithelia in response to LPA.


Cancer Research | 2009

Haploinsufficiency of Krüppel-Like Factor 5 Rescues the Tumor-Initiating Effect of the ApcMin Mutation in the Intestine

Beth B. McConnell; Agnieszka B. Bialkowska; Mandayam O. Nandan; Amr M. Ghaleb; Frank J Gordon; Vincent W. Yang

Inactivation of the tumor suppressor adenomatous polyposis coli, with the resultant activation of beta-catenin, is the initiating event in the development of a majority of colorectal cancers. Krüppel-like factor 5 (KLF5), a proproliferative transcription factor, is highly expressed in the proliferating intestinal crypt epithelial cells. To determine whether KLF5 contributes to intestinal adenoma formation, we examined tumor burdens in Apc(Min/+) mice and Apc(Min/+)/Klf5(+/-) mice. Compared with Apc(Min/+) mice, Apc(Min/+)/Klf5(+/-) mice had a 96% reduction in the number of intestinal adenomas. Reduced tumorigenicity in the Apc(Min/+)/Klf5(+/-) mice correlated with reduced levels and nuclear localization of beta-catenin as well as reduced expression of two beta-catenin targets, cyclin D1 and c-Myc. In vitro studies revealed a physical interaction between KLF5 and beta-catenin that enhanced the nuclear localization and transcriptional activity of beta-catenin. Thus, KLF5 is necessary for the tumor-initiating activity of beta-catenin during intestinal adenoma formation in Apc(Min/+) mice, and reduced expression of KLF5 offsets the tumor-initiating activity of the Apc(Min) mutation by reducing the nuclear localization and activity of beta-catenin.


Journal of Biological Chemistry | 2007

Protein Inhibitor of Activated STAT1 Interacts with and Up-regulates Activities of the Pro-proliferative Transcription Factor Krüppel-like Factor 5*

James X. Du; C. Chris Yun; Agnieszka B. Bialkowska; Vincent W. Yang

Krüppel-like factor 5 (KLF5) is a zinc finger-containing transcription factor that regulates proliferation of various cell types, including fibroblasts, smooth muscle cells, and intestinal epithelial cells. To identify proteins that interact with KLF5, we performed a yeast two-hybrid screen of a 17-day mouse embryo cDNA library with KLF5 as bait. The screen revealed 21 preys clustered in four groups as follows: proteins mediating gene expression, metabolism, trafficking, and signaling. Among them was protein inhibitor of activated STAT1 (PIAS1), a small ubiquitin-like modifier (SUMO) ligase that regulates transcription factors through SUMOylation or physical interaction. Association between PIAS1 and KLF5 was verified by co-immunoprecipitation. Structural determination showed that the acidic domain of PIAS1 bound to both the amino- and carboxyl-terminal regions of KLF5 and that this interaction was inhibited by the amino terminus of PIAS1. Indirect immunofluorescence demonstrated that PIAS1 and KLF5 co-localized to the nucleus. Furthermore, the PIAS1-KLF5 complex was co-localized with the TATA-binding protein and was enriched in RNA polymerase II foci. Transient transfection of COS-7 cells by PIAS1 and KLF5 significantly increased the steady-state protein levels of each other. Luciferase reporter and chromatin immunoprecipitation assays showed that PIAS1 significantly activated the promoters of KLF5 and PIAS1 and synergistically increased the transcriptional activity of KLF5 in activating the cyclin D1 and Cdc2 promoters. Importantly, PIAS1 increased the ability of KLF5 to enhance cell proliferation in transfected cells. These results indicate that PIAS1 is a functional partner of KLF5 and enhances the ability of KLF5 to promote proliferation.


Gastroenterology | 2011

Krüppel-Like Factor 5 Protects Against Dextran Sulfate Sodium−Induced Colonic Injury in Mice by Promoting Epithelial Repair

Beth B. McConnell; Samuel S. Kim; Agnieszka B. Bialkowska; Ke Yu; Shanthi V. Sitaraman; Vincent W. Yang

BACKGROUND & AIMS Krüppel-like factor 5 (KLF5) is a transcription factor that promotes proliferation, is highly expressed in dividing crypt cells of the gastrointestinal epithelium, and is induced by various stress stimuli. We sought to determine the role of KLF5 in colonic inflammation and recovery by studying mice with dextran sulfate sodium (DSS)-induced colitis. METHODS Wild-type (WT) and Klf5(+/-) mice were given DSS in the drinking water to induce colitis. For recovery experiments, mice were given normal drinking water for 5 days after DSS administration. The extent of colitis was determined using established clinical and histological scoring systems. Immunohistochemical and immunoblotting analyses were used to examine proliferation, migration, and expression of the epidermal growth factor receptor. RESULTS Klf5 expression was increased in colonic tissues of WT mice given DSS; induction of Klf5 was downstream of mitogen-activated protein kinase signaling. In DSS-induced colitis, Klf5(+/-) mice exhibited greater sensitivity to DSS than WT mice, with significantly higher clinical and histological colitis scores. In recovery experiments, Klf5(+/-) mice showed poor recovery, with continued weight loss and higher mortality than WT mice. Klf5(+/-) mice from the recovery period had reduced epithelial proliferation and cell migration at sites of ulceration compared to WT mice; these reductions correlated with reduced expression of epidermal growth factor receptor. CONCLUSIONS Epithelial repair is an important aspect of recovery from DSS-induced colitis. The transcription factor KLF5 regulates mucosal healing through its effects on epithelial proliferation and migration.


Journal of Clinical Investigation | 2015

Krüppel-like factor 6 regulates mitochondrial function in the kidney

Sandeep K. Mallipattu; Sylvia J. Horne; Vivette D. D’Agati; Goutham Narla; Ruijie Liu; Michael A. Frohman; Kathleen G. Dickman; Edward Y. Chen; Avi Ma’ayan; Agnieszka B. Bialkowska; Amr M. Ghaleb; Mandayam O. Nandan; Mukesh K. Jain; Ilse Daehn; Peter Y. Chuang; Vincent W. Yang; John Cijiang He

Maintenance of mitochondrial structure and function is critical for preventing podocyte apoptosis and eventual glomerulosclerosis in the kidney; however, the transcription factors that regulate mitochondrial function in podocyte injury remain to be identified. Here, we identified Krüppel-like factor 6 (KLF6), a zinc finger domain transcription factor, as an essential regulator of mitochondrial function in podocyte apoptosis. We observed that podocyte-specific deletion of Klf6 increased the susceptibility of a resistant mouse strain to adriamycin-induced (ADR-induced) focal segmental glomerulosclerosis (FSGS). KLF6 expression was induced early in response to ADR in mice and cultured human podocytes, and prevented mitochondrial dysfunction and activation of intrinsic apoptotic pathways in these podocytes. Promoter analysis and chromatin immunoprecipitation studies revealed that putative KLF6 transcriptional binding sites are present in the promoter of the mitochondrial cytochrome c oxidase assembly gene (SCO2), which is critical for preventing cytochrome c release and activation of the intrinsic apoptotic pathway. Additionally, KLF6 expression was reduced in podocytes from HIV-1 transgenic mice as well as in renal biopsies from patients with HIV-associated nephropathy (HIVAN) and FSGS. Together, these findings indicate that KLF6-dependent regulation of the cytochrome c oxidase assembly gene is critical for maintaining mitochondrial function and preventing podocyte apoptosis.


Oncogene | 2009

Mouse embryonic fibroblasts null for the Krüppel-like factor 4 gene are genetically unstable

Engda G. Hagos; Amr M. Ghaleb; W B Dalton; Agnieszka B. Bialkowska; Vincent W. Yang

Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with tumor suppressive activity in colorectal cancer. Here, we investigated whether KLF4 is involved in maintaining genetic stability in mouse embryonic fibroblasts (MEFs) isolated from mice wild type (+/+), heterozygous (+/−), or homozygous (−/−) for the Klf4 alleles. Compared to Klf4+/+ and Klf4+/− MEFs, Klf4−/− MEFs had both a higher level of apoptosis and rate of proliferation. Quantification of chromosome numbers showed that Klf4−/− MEFs were aneuploid. A higher number of Klf4−/− MEFs exhibited γ-H2AX foci and had higher amounts of γ-H2AX compared to controls. Cytogenetic analysis demonstrated the presence of numerous chromosome aberrations including dicentric chromosomes, chromatid breaks, and double minute chromosomes in Klf4−/− cells but in few, if any, Klf4+/+ or Klf4+/− MEFs. Approximately 25% of Klf4−/− MEFs exhibited centrosome amplification in contrast to the less than 5% of Klf4+/+ or Klf4+/− MEFs. Finally, only Klf4−/− MEFs were capable of anchorage-independent growth. Taken together, these findings demonstrate that MEFs null for the Klf4 alleles are genetically unstable, as evidenced by the presence of aneuploidy, chromosome aberration and centrosome amplification. The results support a crucial role for KLF4 in maintaining genetic stability and as a tumor suppressor.


PLOS ONE | 2013

Prostate Cancer Stem Cell-Targeted Efficacy of a New-Generation Taxoid, SBT-1214 and Novel Polyenolic Zinc-Binding Curcuminoid, CMC2.24

Galina I. Botchkina; Edison S. Zuniga; Rebecca H. Rowehl; Rosa Park; Rahuldev S. Bhalla; Agnieszka B. Bialkowska; Francis Johnson; Lorne M. Golub; Yu Zhang; Iwao Ojima; Kenneth R. Shroyer

Background Prostate cancer is the second leading cause of cancer death among men. Multiple evidence suggests that a population of tumor-initiating, or cancer stem cells (CSCs) is responsible for cancer development and exceptional drug resistance, representing a highly important therapeutic target. The present study evaluated CSC-specific alterations induced by new-generation taxoid SBT-1214 and a novel polyenolic zinc-binding curcuminoid, CMC2.24, in prostate CSCs. Principal Findings The CD133high/CD44high phenotype was isolated from spontaneously immortalized patient-derived PPT2 cells and highly metastatic PC3MM2 cells. Weekly treatment of the NOD/SCID mice bearing PPT2- and PC3MM3-induced tumors with the SBT-1214 led to dramatic suppression of tumor growth. Four of six PPT2 and 3 of 6 PC3MM2 tumors have shown the absence of viable cells in residual tumors. In vitro, SBT-1214 (100nM-1µM; for 72 hr) induced about 60% cell death in CD133high/CD44+/high cells cultured on collagen I in stem cell medium (in contrast, the same doses of paclitaxel increased proliferation of these cells). The cytotoxic effects were increased when SBT-1214 was combined with the CMC2.24. A stem cell-specific PCR array assay revealed that this drug combination mediated massive inhibition of multiple constitutively up-regulated stem cell-related genes, including key pluripotency transcription factors. Importantly, this drug combination induced expression of p21 and p53, which were absent in CD133high/CD44high cells. Viable cells that survived this treatment regimen were no longer able to induce secondary spheroids, exhibited significant morphological abnormalities and died in 2-5 days. Conclusions We report here that the SBT-1214 alone, or in combination with CMC2.24, possesses significant activity against prostate CD133high/CD44+/high tumor-initiating cells. This drug combination efficiently inhibits expression of the majority of stem cell-related genes and pluripotency transcription factors. In addition, it induces a previously absent expression of p21 and p53 (“gene wake-up”), which can potentially reverse drug resistance by increasing sensitivity to anti-cancer drugs.


Molecular Cancer Therapeutics | 2011

Identification of Small-Molecule Inhibitors of the Colorectal Cancer Oncogene Krüppel-Like Factor 5 Expression by Ultrahigh-Throughput Screening

Agnieszka B. Bialkowska; Melissa Crisp; Thomas D. Bannister; Yuanjun He; Sarwat Chowdhury; Stephan C. Schürer; Peter Chase; Timothy P. Spicer; Franck Madoux; Chenlu Tian; Peter Hodder; Daniel W. Zaharevitz; Vincent W. Yang

The transcription factor Krüppel-like factor 5 (KLF5) is primarily expressed in the proliferative zone of the mammalian intestinal epithelium, where it regulates cell proliferation. Studies showed that inhibition of KLF5 expression reduces proliferation rates in human colorectal cancer cells and intestinal tumor formation in mice. To identify chemical probes that decrease levels of KLF5, we used cell-based ultrahigh-throughput screening (uHTS) to test compounds in the public domain of NIH, the Molecular Libraries Probe Production Centers Network library. The primary screen involved luciferase assays in the DLD-1/pGL4.18hKLF5p cell line, which stably expressed a luciferase reporter driven by the human KLF5 promoter. A cytotoxicity counterscreen was done in the rat intestinal epithelial cell line, IEC-6. We identified 97 KLF5-selective compounds with EC50 < 10 μmol/L for KLF5 inhibition and EC50 > 10 μmol/L for IEC-6 cytotoxicity. The two most potent compounds, CIDs (PubChem Compound IDs) 439501 and 5951923, were further characterized on the basis of computational, Western blot, and cell viability analyses. Both of these compounds, and two newly synthesized structural analogs of CID 5951923, significantly reduced endogenous KLF5 protein levels and decreased viability of several colorectal cancer cell lines without any apparent impact on IEC-6 cells. Finally, when tested in the NCI-60 panel of human cancer cell lines, compound CID 5951923 was selectively active against colon cancer cells. Our results show the feasibility of uHTS in identifying novel compounds that inhibit colorectal cancer cell proliferation by targeting KLF5. Mol Cancer Ther; 10(11); 2043–51. ©2011 AACR.

Collaboration


Dive into the Agnieszka B. Bialkowska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Liu

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping He

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge