Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent W. Yang is active.

Publication


Featured researches published by Vincent W. Yang.


Physiological Reviews | 2010

Mammalian Krüppel-Like Factors in Health and Diseases

Beth B. McConnell; Vincent W. Yang

The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.


The International Journal of Biochemistry & Cell Biology | 2000

The biology of the mammalian Krüppel-like family of transcription factors

Duyen T. Dang; Jonathan Pevsner; Vincent W. Yang

Recent advances in molecular cloning have led to the identification of a large number of mammalian zinc finger-containing transcription factors that exhibit homology to the Drosophila melanogaster protein, Krüppel. Although the amino acid sequences in the zinc finger domains of these Krüppel-like factors (KLFs) are closely related to one another, the regions outside the zinc fingers of the proteins are usually unique. KLFs display seemingly different and broad biological properties with each functioning as an activator of transcription, a repressor or both. This review article provides a current phylogenetic classification of the identified KLFs to date. More importantly, the currently known biological activities of the KLFs in regulating transcription, cell proliferation, differentiation and development are summarized and compared. Further characterization of this interesting protein family should provide additional insights into the their respective regulatory role in various important biological processes.


Gastroenterology | 2008

Stem Cell Therapy for Liver Disease: Parameters Governing the Success of Using Bone Marrow Mesenchymal Stem Cells

Tom K. Kuo; Shun–Pei Hung; Chiao–Hui Chuang; Chien–Tsun Chen; Yu Ru V Shih; Szu–Ching Y. Fang; Vincent W. Yang; Oscar K. Lee

BACKGROUND & AIMS Liver transplantation is the primary treatment for various end-stage hepatic diseases but is hindered by the lack of donor organs and by complications associated with rejection and immunosuppression. There is increasing evidence to suggest the bone marrow is a transplantable source of hepatic progenitors. We previously reported that multipotent bone marrow-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells with almost 100% induction frequency under defined conditions, suggesting the potential for clinical applications. The aim of this study was to critically analyze the various parameters governing the success of bone marrow-derived mesenchymal stem cell-based therapy for treatment of liver diseases. METHODS Lethal fulminant hepatic failure in nonobese diabetic severe combined immunodeficient mice was induced by carbon tetrachloride gavage. Mesenchymal stem cell-derived hepatocytes and mesenchymal stem cells were then intrasplenically or intravenously transplanted at different doses. RESULTS Both mesenchymal stem cell-derived hepatocytes and mesenchymal stem cells, transplanted by either intrasplenic or intravenous route, engrafted recipient liver, differentiated into functional hepatocytes, and rescued liver failure. Intravenous transplantation was more effective in rescuing liver failure than intrasplenic transplantation. Moreover, mesenchymal stem cells were more resistant to reactive oxygen species in vitro, reduced oxidative stress in recipient mice, and accelerated repopulation of hepatocytes after liver damage, suggesting a possible role for paracrine effects. CONCLUSIONS Bone marrow-derived mesenchymal stem cells can effectively rescue experimental liver failure and contribute to liver regeneration and offer a potentially alternative therapy to organ transplantation for treatment of liver diseases.


Cell Research | 2005

Krüppel-like factors 4 and 5: The yin and yang regulators of cellular proliferation

Amr M. Ghaleb; Mandayam O. Nandan; Sengthong Chanchevalap; W. Brian Dalton; Irfan M. Hisamuddin; Vincent W. Yang

ABSTRACTKrüppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverse regulatory functions in cell growth, proliferation, differentiation, and embryogenesis. KLF4 and KLF5 are two closely related members of the KLF family that have a similar tissue distribution in embryos and adults. However, the two KLFs often exhibit opposite effects on regulation of gene transcription, despite binding to similar, if not identical, cis-acting DNA sequences. In addition, KLF4 and 5 exert contrasting effects on cell proliferation in many instances; while KLF4 is an inhibitor of cell growth, KLF5 stimulates proliferation. Here we review the biological properties and biochemical mechanisms of action of the two KLFs in the context of growth regulation.


Oncogene | 2004

Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer

Weidong Zhao; Irfan M. Hisamuddin; Mandayam O. Nandan; Brian A. Babbin; Neil E Lamb; Vincent W. Yang

Krüppel-like factor 4 (KLF4 or GKLF) is an inhibitor of the cell cycle. The gene encoding KLF4 is localized on chromosome 9q, previously shown to exhibit allelic loss in colorectal cancer (CRC). In this study, we show that the mean level of KLF4 mRNA in a panel of 30 CRC was 52% that of paired normal colonic tissues. Similarly, the levels of KLF4 mRNA and protein in a panel of six established CRC cell lines were significantly lower than those of an untransformed colonic epithelial cell line. Using highly polymorphic DNA markers that flank the KLF4 locus, we found evidence for loss of heterozygosity (LOH) in two of eight surgically resected CRC specimens. In addition, LOH was observed in five of six CRC cell lines with one additional cell line exhibiting hemizygous deletion in the KLF4 gene. We also found that the 5′-untranslated region of KLF4 was hypermethylated in a subset of resected CRC specimens and cell lines. Lastly, the open-reading frame of KLF4 in two of three CRC cell lines examined contained several point mutations that resulted in a diminished ability to activate the p21WAF1/Cip1 promoter. These findings indicate that KLF4 is a potential tumor suppressor gene in CRC.


Hepatology | 2012

Rapid generation of mature hepatocyte‐like cells from human induced pluripotent stem cells by an efficient three‐step protocol

Yu-Fan Chen; Chien-Yu Tseng; Hsei-Wei Wang; Hung-Chih Kuo; Vincent W. Yang; Oscar K. Lee

Liver transplantation is the only definitive treatment for end‐stage cirrhosis and fulminant liver failure, but the lack of available donor livers is a major obstacle to liver transplantation. Recently, induced pluripotent stem cells (iPSCs) derived from the reprogramming of somatic fibroblasts, have been shown to resemble embryonic stem (ES) cells in that they have pluripotent properties and the potential to differentiate into all cell lineages in vitro, including hepatocytes. Thus, iPSCs could serve as a favorable cell source for a wide range of applications, including drug toxicity testing, cell transplantation, and patient‐specific disease modeling. Here, we describe an efficient and rapid three‐step protocol that is able to rapidly generate hepatocyte‐like cells from human iPSCs. This occurs because the endodermal induction step allows for more efficient and definitive endoderm cell formation. We show that hepatocyte growth factor (HGF), which synergizes with activin A and Wnt3a, elevates the expression of the endodermal marker Foxa2 (forkhead box a2) by 39.3% compared to when HGF is absent (14.2%) during the endodermal induction step. In addition, iPSC‐derived hepatocytes had a similar gene expression profile to mature hepatocytes. Importantly, the hepatocyte‐like cells exhibited cytochrome P450 3A4 (CYP3A4) enzyme activity, secreted urea, uptake of low‐density lipoprotein (LDL), and possessed the ability to store glycogen. Moreover, the hepatocyte‐like cells rescued lethal fulminant hepatic failure in a nonobese diabetic severe combined immunodeficient mouse model. Conclusion: We have established a rapid and efficient differentiation protocol that is able to generate functional hepatocyte‐like cells from human iPSCs. This may offer an alternative option for treatment of liver diseases. (Hepatology 2012)


Journal of Molecular Biology | 2003

Transcriptional profiling of Krüppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation.

Xin-Ming Chen; Erika M. Whitney; Shu Y Gao; Vincent W. Yang

Krüppel-like factor 4 (KLF4) is an epithelially enriched, zinc finger-containing transcription factor, the expression of which is associated with growth arrest. Constitutive expression of KLF4 inhibits G1/S transition of the cell cycle but the manner by which it accomplishes this effect is unclear. To better understand the biochemical function of KLF4, we identified its target genes using cDNA microarray analysis in an established human cell line containing inducible KLF4. RNA extracted from induced and control cells were hybridized differentially to microarray chips containing 9600 human cDNAs. In all, 84 genes with significantly increased expression and 107 genes with significantly reduced expression due to KLF4 induction were identified. The affected genes are sorted to several clusters on the basis of functional relatedness. A major cluster belongs to genes involved in cell-cycle control. Within this cluster, many up-regulated genes are inhibitors of the cell cycle and down-regulated genes are promoters of the cell cycle. Another up-regulated gene cluster includes nine keratin genes, of which seven are located in a specific region on chromosome 12. The results indicate that KLF4 is involved in the control of cell proliferation and does so by eliciting changes in expression of numerous cell-cycle regulatory genes in a concerted manner. Furthermore, KLF4 regulates expression of a group of epithelial-specific keratin genes in a manner consistent with a potential locus control region function.


The EMBO Journal | 1991

MOLECULAR CLONING AND EXPRESSION OF A CDNA ENCODING THE RABBIT ILEAL VILLUS CELL BASOLATERAL MEMBRANE NA+/H+ EXCHANGER

Chung Ming Tse; A I Ma; Vincent W. Yang; A. J. M. Watson; Susan A. Levine; Marshall H. Montrose; J Potter; Claude Sardet; Jacques Pouysségur; Mark Donowitz

A cDNA clone encoding a rabbit ileal villus cell Na+/H+ exchanger was isolated and its complete nucleotide sequence was determined. The cDNA is 4 kb long and contains 322 bp of 5′‐untranslated region, 2451 bp of open reading frame and 1163 bp of 3′‐untranslated area, with 70%, 91% and 40% identity to the human sequence, respectively. Amino acid sequence deduced from the longest open reading frame indicated a protein of 816 residues (predicted Mr 90,716) which exhibits 95% amino acid identity to the human Na+/H+ exchanger. The two putative glycosylation sites in the human Na+/H+ exchanger are conserved in this protein, suggesting that it is a glycoprotein. Stable transfection of the cDNA into an Na+/H+ exchanger deficient fibroblast cell line, established Na+/H+ exchange. The Na+/H+ exchanger was stimulated by serum and a phorbol ester but not by 8‐Br‐cAMP. In Northern blot analysis, the cDNA hybridized to a 4.8 kb message in rabbit ileal villus cells, kidney cortex, kidney medulla, adrenal gland, brain and descending colon and to a 5.2 kb message in cultured human colonic cancer cell lines, HT29‐18 and Caco‐2. In immunoblotting, a polyclonal antibody raised against a fusion protein of beta‐galactosidase and the C‐terminal 158 amino acids of the human Na+/H+ exchanger identified a rabbit ileal basolateral membrane protein of 94 kd and only weakly interacted with the ileal brush border membrane. In immunocytochemical studies using ileal villus and crypt epithelial cells, the same antibody identified basolateral and not brush border epitopes. Restriction analysis of genomic DNA with a 462 bp PstI‐AccI fragment of the rabbit Na+/H+ exchanger strongly suggests the existence of closely related Na+/H+ exchanger genes. The near identity of the basolateral Na+/H+ exchanger and the human Na+/H+ exchanger plus the ubiquitous expression of this message suggests that the ileal basolateral Na+/H+ exchanger is the ‘housekeeping’ Na+/H+ exchanger.


Oncogene | 2003

Overexpression of Krüppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity.

Xin-Ming Chen; Jing Feng; Michael Torbenson; Long H Dang; Vincent W. Yang

Krüppel-like factor 4 (KLF4) is a zinc-finger-containing transcription factor, the expression of which is enriched in the postmitotic cells of the intestinal epithelium. KLF4 is a target gene of the tumor suppressor adenomatous polyposis coli (APC). We sought to determine the role of KLF4 in suppressing the tumorigenecity of RKO colon cancer cells, which do not express KLF4. We utilized an established system in RKO cells, in which an inducible promoter controls expression of KLF4. Four independent assays were used to assess the effects of KLF4 induction on tumor cells. We find that KLF4 overexpression reduces colony formation, cell migration and invasion, and in vivo tumorigenecity. The mechanism of action of KLF4 does not involve apoptosis. These findings, along with our previous findings that KLF4 induces G1/S arrest, suggest that KLF4 is a cell cycle checkpoint protein that can reduce tumorigenecity of colon cancer cells.


Clinical Cancer Research | 2010

Near IR Heptamethine Cyanine Dye–Mediated Cancer Imaging

Xiaojian Yang; Chunmeng Shi; Rong Tong; Weiping Qian; Haiyen E. Zhau; Ruoxiang Wang; Guodong Zhu; Jianjun Cheng; Vincent W. Yang; Tianmin Cheng; Maged Henary; Lucjan Strekowski; Leland W.K. Chung

Purpose: Near-IR fluorescence imaging has great potential for noninvasive in vivo imaging of tumors. In this study, we show the preferential uptake and retention of two hepatamethine cyanine dyes, IR-783 and MHI-148, in tumor cells and tissues. Experimental Design: IR-783 and MHI-148 were investigated for their ability to accumulate in human cancer cells, tumor xenografts, and spontaneous mouse tumors in transgenic animals. Time- and concentration-dependent dye uptake and retention in normal and cancer cells and tissues were compared, and subcellular localization of the dyes and mechanisms of the dye uptake and retention in tumor cells were evaluated using organelle-specific tracking dyes and bromosulfophthalein, a competitive inhibitor of organic anion transporting peptides. These dyes were used to detect human cancer metastases in a mouse model and differentiate cancer cells from normal cells in blood. Results: These near-IR hepatamethine cyanine dyes were retained in cancer cells but not normal cells, in tumor xenografts, and in spontaneous tumors in transgenic mice. They can be used to detect cancer metastasis and cancer cells in blood with a high degree of sensitivity. The dyes were found to concentrate in the mitochondria and lysosomes of cancer cells, probably through organic anion transporting peptides, because the dye uptake and retention in cancer cells can be blocked completely by bromosulfophthalein. These dyes, when injected to mice, did not cause systemic toxicity. Conclusions: These two heptamethine cyanine dyes are promising imaging agents for human cancers and can be further exploited to improve cancer detection, prognosis, and treatment. Clin Cancer Res; 16(10); 2833–44. ©2010 AACR.

Collaboration


Dive into the Vincent W. Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Merlin

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Liu

Stony Brook University

View shared research outputs
Researchain Logo
Decentralizing Knowledge