Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnieszka Jazwa is active.

Publication


Featured researches published by Agnieszka Jazwa.


Antioxidants & Redox Signaling | 2008

Heme Oxygenase-1 and the Vascular Bed: From Molecular Mechanisms to Therapeutic Opportunities

Agnieszka Loboda; Agnieszka Jazwa; Anna Grochot-Przeczek; Andrzej Rutkowski; Jaroslaw Cisowski; Anupam Agarwal; Alicja Jozkowicz; Jozef Dulak

Heme oxygenase-1, an enzyme degrading heme to carbon monoxide, iron, and biliverdin, has been recognized as playing a crucial role in cellular defense against stressful conditions, not only related to heme release. HO-1 protects endothelial cells from apoptosis, is involved in blood-vessel relaxation regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in blood-vessel formation by means of angiogenesis and vasculogenesis. The latter functions link HO-1 not only to cardiovascular ischemia but also to many other conditions that, like development, wound healing, or cancer, are dependent on neovascularization. The aim of this comprehensive review is to address the mechanisms of HO-1 regulation and function in cardiovascular physiology and pathology and to demonstrate some possible applications of the vast knowledge generated so far. Recent data provide powerful evidence for the involvement of HO-1 in the therapeutic effect of drugs used in cardiovascular diseases. Novel studies open the possibilities of application of HO-1 for gene and cell therapy. Therefore, research in forthcoming years should help to elucidate both the real role of HO-1 in the effect of drugs and the clinical feasibility of HO-1-based cell and gene therapy, creating the effective therapeutic avenues for this refined antioxidant system.


Antioxidants & Redox Signaling | 2011

Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism

Agnieszka Jazwa; Ana I. Rojo; Nadia G. Innamorato; Marlen Hesse; Javier Fernández-Ruiz; Antonio Cuadrado

Current therapies for motor symptoms of Parkinsons disease (PD) are based on dopamine replacement. However, the disease progression remains unaffected, because of continuous dopaminergic neuron loss. Since oxidative stress is actively involved in neuronal death in PD, pharmacological targeting of the antioxidant machinery may have therapeutic value. Here, we analyzed the relevance of the antioxidant phase II response mediated by the transcription factor NF-E2-related factor 2 (Nrf2) on brain protection against the parkinsonian toxin methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Intraperitoneal administration of the potent Nrf2 activator sulforaphane (SFN) increased Nrf2 protein levels in the basal ganglia and led to upregulation of phase II antioxidant enzymes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase (NQO1). In wild-type mice, but not in Nrf2-knockout mice, SFN protected against MPTP-induced death of nigral dopaminergic neurons. The neuroprotective effects were accompanied by a decrease in astrogliosis, microgliosis, and release of pro-inflammatory cytokines. These results provide strong pharmacokinetic and biochemical evidence for activation of Nrf2 and phase II genes in the brain and also offer a neuroprotective strategy that may have clinical relevance for PD therapy.


Journal of Immunology | 2006

A Novel Role of Hypoxia-Inducible Factor in Cobalt Chloride- and Hypoxia-Mediated Expression of IL-8 Chemokine in Human Endothelial Cells

Jozef Dulak; Agnieszka Loboda; Agnieszka Jazwa; Alicja Jozkowicz

I n their recent article, Kim et al. (1) demonstrated that activation of hypoxia-inducible factor-1 (HIF-1) transcription factor by hypoxia (1% O2) or CoCl2, a hypoxiamimic, can induce IL-8 mRNA and protein expressions in various human endothelial cells, namely dermal vascular (HDMVEC), pulmonary microvascular (HPMVEC), brain (HBEC), and pulmonary aortic (HPAEC), an observation similar to that of previous, but uncited, investigators (2). The majority of the present experiments has been done in HDMVEC. However, our recently published data indicate that the underlying mechanisms may be more complex. In our experiments done in immortalized HDMVEC line HMEC-1, we have observed that neither hypoxia (3) nor CoCl2 (4) induces IL-8 expression. In fact, the effect of hypoxia (1% O2) on both IL-8 mRNA and protein expression was inhibitory (3). In addition, CoCl2 was not able to enhance the expression of IL-8 (4), although it increased HIF-1 activation and synthesis of vascular endothelial growth factor to the same level as hypoxia (3, 4). Thus, our data point to the other mechanisms of regulation of IL-8 than that demonstrated by Kim et al. Moreover, in another recent article (5), activation of HIF-1 by prolyl hydroxylase inhibitor attenuated IL-8 production in HMEC-1. Interestingly, the negative role of HIF-1 in regulation of IL-8 expression also has been demonstrated recently in several tumor cell lines (6), whereas another study showed that desferoxamine, an activator of HIF-1, decreased TNF-induced IL-8 synthesis in HDMVEC (7). The reasons for such different data are not clear. First, the cell-type specific effect may exist. However, it seems that HDMVEC used by Kim et al., which were provided to them by Drs. Ades and Lawley, might be in fact the same as the HMEC-1 line (8) used by us (3, 4) and others (5, 7). Second, the concentrations of CoCl2 used by Kim et al. to stimulate IL-8 expression were very high, i.e., 0.5-1 mM. Both in our hands (4) and in Ockaili et al. experiments (5), much lower concentrations, i.e., 0.1-0.25 mM, of CoCl2 potently stabilized HIF-1 and activated a hypoxia-responsive element in reporter gene assays. However, such low concentration of CoCl2 did not affect IL-8 production, although it potently enhanced HIF-1dependent vascular endothelial growth factor synthesis by HMEC-1 to the level exerted by hypoxia (3, 4). In fact, 0.25 mM CoCl2 was also not effective in the work of Kim et al. (1). Finally, in our hands, 1% O2 down-regulated IL-8 mRNA expression and protein synthesis after 24 h of culture. In turn, Kim et al. measured IL-8 production only after 6 h of hypoxia (description to Fig. 3 states this time, although in the text the authors mentioned 24 h, recalling the same figure) and observed only an 1.6-fold increase in protein synthesis. Thus, the influence of HIF-1 and hypoxia on IL-8 production is far from clear. Which effects reflect the physiological conditions remain to be elucidated.


Current Drug Targets | 2010

Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases

Agnieszka Jazwa; Antonio Cuadrado

Heme oxygenase-1 (HO-1), an enzyme degrading heme to carbon monoxide, free iron, and biliverdin, participates in the cell defence against oxidative stress and it has been speculated that it might be a new therapeutic target for neuroprotection. In this review, we discuss recent findings on the regulation of the HO-1 gene, Hmox1, in the brain with particular focus on the transcription factors Nrf2 and HIF-1. Functional polymorphisms in Hmox1 have been associated with high risk for Alzheimers and Parkinsons disease. Hence, we review the current knowledge on the role of HO-1 and its enzymatic products on these two pathologies as well as ischemic brain injury. HO-1 modulates the inflammatory response in several scenarios, and therefore we discuss its role in modulation of the innate immune cell of the brain, microglia. From the therapeutic side, the blood brain barrier represents an obstacle to directly modulate heme oxygenase activity, but drugs activating the transcription actor Nrf2, which have a very diverse molecular structure, may be good candidates to induce HO-1 in concert with other antioxidant and detoxification enzymes. A more complete understanding on the mechanisms regulating HO-1 expression in brain cells and how these mechanisms are involved in neuropathological changes will be essential to develop these new therapeutic approaches.


PLOS ONE | 2010

Different Susceptibility to the Parkinson's Toxin MPTP in Mice Lacking the Redox Master Regulator Nrf2 or Its Target Gene Heme Oxygenase-1

Nadia G. Innamorato; Agnieszka Jazwa; Ana I. Rojo; Concepción García; Javier Fernández-Ruiz; Anna Grochot–Przeczek; Anna Stachurska; Alicja Jozkowicz; Jozef Dulak; Antonio Cuadrado

Background The transcription factor Nrf2 (NF-E2-related factor 2) and its target gene products, including heme oxygenase-1 (HO-1), elicit an antioxidant response that may have therapeutic value for Parkinsons disease (PD). However, HO-1 protein levels are increased in dopaminergic neurons of Parkinsons disease (PD) patients, suggesting its participation in free-iron deposition, oxidative stress and neurotoxicity. Before targeting Nrf2 for PD therapy it is imperative to determine if HO-1 is neurotoxic or neuroprotective in the basal ganglia. Methodology We addressed this question by comparing neuronal damage and gliosis in Nrf2- or HO-1-knockout mice submitted to intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for five consecutive days. Nrf2-knockout mice showed exacerbated gliosis and dopaminergic nigrostriatal degeneration, as determined by immunohistochemical staining of tyrosine hydroxylase in striatum (STR) and substantia nigra (SN) and by HPLC determination of striatal dopamine and 3,4- dihydroxyphenylacetic acid (DOPAC). On the other hand, the severity of gliosis and dopaminergic degeneration in HO-1-null mice was neither increased nor reduced. Regarding free-iron deposition, both Nrf2- and HO-1-deficient mice exhibited similar number of deposits as determined by Perls staining, therefore indicating that these proteins do not contribute significantly to iron accumulation or clearance in MPTP-induced Parkinsonism. Conclusions These results suggest that HO-1 does not protect or enhance the sensitivity to neuronal death in Parkinsons disease and that pharmacological or genetic intervention on Nrf2 may provide a neuroprotective benefit as add on therapy with current symptomatic protocols.


Antioxidants & Redox Signaling | 2012

Heme Oxygenase-1 Inhibits Myoblast Differentiation by Targeting Myomirs

Magdalena Kozakowska; Maciej Ciesla; Anna Stefanska; Klaudia Skrzypek; Halina Was; Agnieszka Jazwa; Anna Grochot-Przeczek; Jerzy Kotlinowski; Agnieszka Szymula; Aleksandra Bartelik; Milena Mazan; Oleksandr Yagensky; Urszula Florczyk; Krzysztof Lemke; Anna Zebzda; Grzegorz Dyduch; Witold Nowak; Krzysztof Szade; Jacek Stepniewski; Marcin Majka; Rafal Derlacz; Agnieszka Loboda; Jozef Dulak; Alicja Jozkowicz

AIMS Heme oxygenase-1 (HMOX1) is a cytoprotective enzyme degrading heme to biliverdin, iron ions, and carbon monoxide, whose expression is induced in response to oxidative stress. Its overexpression has been suggested as a strategy improving survival of transplanted muscle precursors. RESULTS Here we demonstrated that HMOX1 inhibits differentiation of myoblasts and modulates miRNA processing: downregulates Lin28 and DGCR8, lowers the total pool of cellular miRNAs, and specifically blocks induction of myomirs. Genetic or pharmacological activation of HMOX1 in C2C12 cells reduces the abundance of miR-1, miR-133a, miR-133b, and miR-206, which is accompanied by augmented production of SDF-1 and miR-146a, decreased expression of MyoD, myogenin, and myosin, and disturbed formation of myotubes. Similar relationships between HMOX1 and myomirs were demonstrated in murine primary satellite cells isolated from skeletal muscles of HMOX1(+/+), HMOX1(+/-), and HMOX1(-/-) mice or in human rhabdomyosarcoma cell lines. Inhibition of myogenic development is independent of antioxidative properties of HMOX1. Instead it is mediated by CO-dependent inhibition of c/EBPδ binding to myoD promoter, can be imitated by SDF-1, and partially reversed by enforced expression of miR-133b and miR-206. Control C2C12 myoblasts injected to gastrocnemius muscles of NOD-SCID mice contribute to formation of muscle fibers. In contrast, HMOX1 overexpressing C2C12 myoblasts form fast growing, hyperplastic tumors, infiltrating the surrounding tissues, and disseminating to the lungs. INNOVATION We evidenced for the first time that HMOX1 inhibits differentiation of myoblasts, affects the miRNA processing enzymes, and modulates the miRNA transcriptome. CONCLUSION HMOX1 improves the survival of myoblasts, but concurrently through regulation of myomirs, may act similarly to oncogenes, increasing the risk of hyperplastic growth of myogenic precursors.


Endothelium-journal of Endothelial Cell Research | 2005

Atorvastatin affects several angiogenic mediators in human endothelial cells.

Jozef Dulak; Agnieszka Loboda; Agnieszka Jazwa; Anna Zagorska; Jacob Dörler; Hannes F. Alber; Wolfgang Dichtl; Franz Weidinger; Matthias Frick; Alicja Jozkowicz

The pleiotropic effects of statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, have been recently extended to the modulation of angiogenesis. Here, to get more insight into the statins action, the authors have investigated the effect of atorvastatin on the expression of several angiogenic and inflammatory genes in human umbilical endothelial cells (HUVECs). Atorvastatin was proangiogenic at the dose of 10 nM, and antiangiogenic at the concentrations of 1 to 10 micro M. Moreover, these higher concentrations inhibited also the proliferation of HUVECs induced by vascular endothelial growth factor (VEGF). Lower doses of atorvastatin did not influence endothelial cell proliferation. Importantly, atorvastatin at the micromolar concentrations diminished the production of interleukin (IL)-8, a proinflammatory and proangiogenic chemokine, and inhibited the synthesis of urokinase plasminogen activator (uPA), a potent proinflammatory mediator. However, it decreased also the expression of plasminogen activator inhibitor-1 (PAI-1) and thrombospondin-1 (TSP-1), the inhibitors of angiogenesis. Atorvastatin stimulated the expression of angiopoietin (Ang)-2 and moderately enhanced the expression of endothelial nitric oxide synthase (eNOS), whereas heme oxygenase-1 (HO-1) was not significantly affected. In conclusion, the present findings points to other angiogenesis-related effects of atorvastatin, which may be of relevance to the beneficial influence of statins in cardiovascular system.


Gene Therapy | 2011

Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle

H Karvinen; E Pasanen; Tuomas T. Rissanen; P Korpisalo; E Vähäkangas; Agnieszka Jazwa; Mauro Giacca; Seppo Ylä-Herttuala

Vascular endothelial growth factor A (VEGF-A) induces strong angiogenesis and it has been widely used in proangiogenic gene therapy studies. However, little is known about long-term effects of VEGF-A expression in skeletal muscle. Here the long- term effects of adeno-associated virus (AAV) encoding human VEGF-A165 (AAV-VEGF-A) gene transfer in normal and ischemic rabbit hindlimb skeletal muscles were studied. AAV-LacZ was used as a control. In one-year follow-up, a remarkable increase in skeletal muscle perfusion compared with AAV-LacZ was observed measured with Doppler and contrast pulse sequence ultrasound. Angiogenesis was also seen in histology as enlarged and sprouting capillaries. In addition to favorable angiogenic effects, aberrant vascular structures with CD31 positive cell layers were seen inside muscle fibers after AAV-VEGF-A gene transfer. Importantly, we found increased amounts of extracellular matrix with a high number of macrophages and fibrosis in AAV-VEGF-A transduced muscles. No changes in skeletal muscle morphology were detected in AAV-LacZ transduced muscles. Our results indicate that local AAV-VEGF-A gene transfer efficiently promotes long-term angiogenesis in large animal model. However, non-regulated expression of VEGF-A causes unfavorable changes in muscle morphology, which suggests the need for regulation of the transgene expression in long-term AAV-mediated VEGF-A gene transfer applications.


Antioxidants & Redox Signaling | 2014

Nrf2 Regulates Angiogenesis: Effect on Endothelial Cells, Bone Marrow-Derived Proangiogenic Cells and Hind Limb Ischemia

Urszula Florczyk; Agnieszka Jazwa; Monika Maleszewska; Mateusz Mendel; Krzysztof Szade; Magdalena Kozakowska; Anna Grochot-Przeczek; Monika Viscardi; Szymon Czauderna; Karolina Bukowska-Strakova; Jerzy Kotlinowski; Alicja Jozkowicz; Agnieszka Loboda; Jozef Dulak

AIMS Nuclear factor E2-related factor 2 (Nrf2), a key cytoprotective transcription factor, regulates also proangiogenic mediators, interleukin-8 and heme oxygenase-1 (HO-1). However, hitherto its role in blood vessel formation was modestly examined. Particularly, although Nrf2 was shown to affect hematopoietic stem cells, it was not tested in bone marrow-derived proangiogenic cells (PACs). Here we investigated angiogenic properties of Nrf2 in PACs, endothelial cells, and inflammation-related revascularization. RESULTS Treatment of endothelial cells with angiogenic cytokines increased nuclear localization of Nrf2 and induced expression of HO-1. Nrf2 activation stimulated a tube network formation, while its inhibition decreased angiogenic response of human endothelial cells, the latter effect reversed by overexpression of HO-1. Moreover, lack of Nrf2 attenuated survival, proliferation, migration, and angiogenic potential of murine PACs and affected angiogenic transcriptome in vitro. Additionally, angiogenic capacity of PAC Nrf2(-/-) in in vivo Matrigel assay and PAC mobilization in response to hind limb ischemia of Nrf2(-/-) mice were impaired. Despite that, restoration of blood flow in Nrf2-deficient ischemic muscles was better and accompanied by increased oxidative stress and inflammatory response. Accordingly, the anti-inflammatory agent etodolac tended to diminish blood flow in the Nrf2(-/-) mice. INNOVATION Identification of a novel role of Nrf2 in angiogenic signaling of endothelial cells and PACs. CONCLUSION Nrf2 contributes to angiogenic potential of both endothelial cells and PACs; however, its deficiency increases muscle blood flow under tissue ischemia. This might suggest a proangiogenic role of inflammation in the absence of Nrf2 in vivo, concomitantly undermining the role of PACs in such conditions.


Cardiovascular Research | 2013

Pre-emptive hypoxia-regulated HO-1 gene therapy improves post-ischaemic limb perfusion and tissue regeneration in mice

Agnieszka Jazwa; Jacek Stepniewski; Martin Zamykal; Jolanta Jagodzinska; Marco Meloni; Costanza Emanueli; Alicja Jozkowicz; Jozef Dulak

Aims Haem oxygenase-1 (HO-1) is a haem-degrading enzyme that generates carbon monoxide, bilirubin, and iron ions. Through these compounds, HO-1 mitigates cellular injury by exerting antioxidant, anti-apoptotic, and anti-inflammatory effects. Here, we examined the influence of HO-1 deficiency and transient hypoxia/ischaemia-induced HO-1 overexpression on post-injury hindlimb recovery. Methods and results Mice lacking functional HO-1 (HO-1−/−) showed reduced reparative neovascularization in ischaemic skeletal muscles, impaired blood flow (BF) recovery, and increased muscle cell death compared with their wild-type littermates. Human microvascular endothelial cells (HMEC-1) transfected with plasmid vector (pHRE-HO-1) carrying human HO-1 driven by three hypoxia response elements (HREs) and cultured in 0.5% oxygen demonstrated markedly increased expression of HO-1. Such upregulated HO-1 levels were effective in conferring protection against H2O2-induced cell death and in promoting the proangiogenic phenotype of HMEC-1 cells. More importantly, when delivered in vivo, pHRE-HO-1 significantly improved the post-ischaemic foot BF in mice subjected to femoral artery ligation. These effects were associated with reduced levels of pro-inflammatory cytokines (IL-6 and CXCL1) and lower numbers of transferase-mediated dUTP nick-end labelling-positive cells. Moreover, HO-1 delivered into mouse skeletal muscles seems to influence the regenerative potential of myocytes as it significantly changed the expression of transcriptional (Pax7, MyoD, myogenin) and post-transcriptional (miR-146a, miR-206) regulators of skeletal muscle regeneration. Conclusion Our results suggest the therapeutic potential of HO-1 for prevention of adverse effects in critical limb ischaemia.

Collaboration


Dive into the Agnieszka Jazwa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jozef Dulak

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge