Agnieszka Kicel
Medical University of Łódź
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnieszka Kicel.
BioMed Research International | 2015
Ewa Skała; Agnieszka Kicel; Monika A. Olszewska; Anna K. Kiss; Halina Wysokińska
The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots.
Molecules | 2014
Piotr Michel; Anna Dobrowolska; Agnieszka Kicel; Aleksandra Owczarek; Agnieszka Bazylko; Sebastian Granica; Jakub P. Piwowarski; Monika A. Olszewska
Dry leaf extracts of eastern teaberry (Gaultheria procumbens L.) were evaluated as a source of bioactive phytocompounds through systematic activity testing and phytochemical profiling. The antioxidant efficiency was tested using five complementary in vitro models (DPPH; FRAP; linoleic acid (LA) peroxidation assay; O2•− and H2O2 scavenging tests) in parallel with standard antioxidants. The 75% methanol extract and its diethyl ether, ethyl acetate (EAF), n-butanol and water fractions exhibited the dose-dependent responses in all assays, with the highest capacities found for EAF (DPPH EC50 = 2.9 μg/mL; FRAP = 12.8 mmol Fe2+/g; IC50 for LA-peroxidation = 123.9 μg/mL; O2•− SC50 = 3.9 μg/mL; H2O2 SC50 = 7.2 μg/mL). The EAF had also the highest anti-inflammatory activity in the inhibition tests of lipoxygenase and hyaluronidase (60.14% and 21.83% effects, respectively, at the concentration of 100 μg/mL). Activity parameters of the extracts correlated strongly with the levels of total phenolics (72.4–270.7 mg GAE/g), procyanidins, and phenolic acids, whereas for flavonoids only moderate effects were observed. Comprehensive UHPLC-PDA-ESI-MS3 and HPLC-PDA studies led to the identification of 35 polyphenols with a procyanidin A-type trimer, quercetin 3-O-glucuronide, isomers of caffeoylquinic acids, and (‒)-epicatechin being the dominant components. Significant activity levels, high phenolic contents and high extraction yields (39.4%–42.5% DW for defatted and crude methanol extracts, respectively) indicate the value of eastern teaberry leaves as bioactive products.
Molecules | 2016
Agnieszka Kicel; Piotr Michel; Aleksandra Owczarek; Anna Marchelak; Dorota Żyżelewicz; Grażyna Budryn; Joanna Oracz; Monika A. Olszewska
The antioxidant efficiency of 70% aqueous methanolic extracts from the leaves of twelve selected Cotoneaster Medik. species was evaluated using four complementary in vitro tests based on SET- (single electron transfer) and HAT-type (hydrogen atom transfer) mechanisms (DPPH, FRAP, O2•− and H2O2 scavenging assays). The samples exhibited the dose-dependent responses in all assays with activity parameters of EC50 = 18.5–34.5 µg/mL for DPPH; 0.9–3.8 mmol Fe2+/g for FRAP; SC50 = 27.7–74.8 µg/mL for O2•−; and SC50 = 29.0–91.3 µg/mL for H2O2. Significant linear correlations (|r| = 0.76–0.97, p < 0.01) between activity parameters and total contents of phenolics (5.2%–15.4% GAE) and proanthocyanidins (2.1%–15.0% CYE), with weak or no effects for chlorogenic acid isomers (0.69%–2.93%) and total flavonoids (0.28%–1.40%) suggested that among the listed polyphenols, proanthocyanidins are the most important determinants of the tested activity. UHPLC-PDA-ESI-QTOF-MS analyses led to detection of 34 polyphenols, of which 10 B-type procyanidins, 5 caffeoylquinic acids and 14 flavonoids were identified. After cluster analysis of the data matrix, the leaves of Cotoneaster zabelii, C. splendens, C. bullatus, C. divaricatus, C. hjelmqvistii and C. lucidus were selected as the most promising sources of natural antioxidants, exhibiting the highest phenolic levels and antioxidant capacities, and therefore the greatest potential for pharmaceutical applications.
Molecules | 2010
Monika A. Olszewska; Sławomira Nowak; Piotr Michel; Piotr Banaszczak; Agnieszka Kicel
In order to find new sources of natural antioxidants, the antioxidant potential of 70% methanolic extracts from the inflorescences and leaves of 16 species from the genus Sorbus s.s. was evaluated using two complementary in vitro test systems: the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging assay and the AAPH [2,2′-azobis-(2-amidinopropane)dihydrochloride]-induced linoleic acid (LA) peroxidation test. The radical-scavenging capacities of the extracts towards the DPPH radical were in the range of 0.25−0.86 millimolar Trolox® equivalents/g dry weight. They were significantly correlated (r = -0.8089, p < 0.001) with the results of the LA-peroxidation test, indicating the Sorbus extracts to be universal antioxidants. Significant linear correlations were also found between the different antioxidant potentials and total phenolic contents as estimated by the Folin-Ciocalteu method and further verified by serial determinations of proanthocyanidins, chlorogenic acid isomers and flavonoids (|r| in the range of 0.71−0.95, p < 0.001). Cluster analysis of the data matrix identified the ten samples (inflorescences of S. aucuparia, S. pohuashanensis, S. decora, S. koehneana, S. commixta, S. gracilis, and S. sitchensis, and the leaves of S. wilfordii, S. pogonopetala, and S. gracilis) exhibiting the highest antioxidant activity and total phenolic levels and therefore the greatest potential as effective sources for natural health products.
Natural Product Research | 2012
Agnieszka Kicel; Maria Wolbiś
The flowers and leaves of Trifolium repens L. (Fabaceae) were subjected to phytochemical investigation in order to identify their major chemical constituents and to evaluate in vitro antioxidant activity of the isolated compounds against DPPH˙. A total of 12 flavonoids, pterocarpan and methyl caffeate were isolated, then characterised by UV, MS, NMR spectroscopy and identified as quercetin and kaempferol 3-O-(6″-α-rhamnopyranosyl-2″-β-xylopyranosyl)-β-galactopyranosides (1, 2), kaempferol 3-O-(2″,6″-α-dirhamnopyranosyl)-β-galactopyranoside, mauritianin (3), quercetin and kaempferol 3-O-(2″-β-xylopyranosyl)-β-galactopyranosides (4, 5), kaempferol and quercetin 3-O-β-(6″-O-acetyl)-galactopyranosides (6, 7), trifolin (8), hyperoside (9), myricetin 3-O-β-galactopyranoside (10), quercetin (11), ononin (12), medicarpin 3-O-β-glucopyranoside (13) and methyl caffeate (14). Mauritianin, ononin, pterocarpan and methyl caffeate have been reported in this plant for the first time. The compounds 4, 7, 9, 10, and 11 were tested for their antioxidant effect against DPPH˙. All studied compounds were found to have potent activity, but the most effective in the test were compounds 9, 10 and 11 (EC50 values in the range 7.51–9.52 µM).
Oxidative Medicine and Cellular Longevity | 2018
Agnieszka Kicel; Joanna Kolodziejczyk-Czepas; Aleksandra Owczarek; Magdalena Rutkowska; Anna Wajs-Bonikowska; Sebastian Granica; Pawel Nowak; Monika A. Olszewska
The work presents the results of an investigation into the molecular background of the activity of Cotoneaster fruits, providing a detailed description of their phytochemical composition and some of the mechanisms of their anti-inflammatory and antioxidant effects. GS-FID-MS and UHPLC-PDA-ESI-MS3 methods were applied to identify the potentially health-beneficial constituents of lipophilic and hydrophilic fractions, leading to the identification of fourteen unsaturated fatty acids (with dominant linoleic acid, 375.4–1690.2 mg/100 g dw), three phytosterols (with dominant β-sitosterol, 132.2–463.3 mg/100 g), two triterpenoid acids (10.9–54.5 mg/100 g), and twenty-six polyphenols (26.0–43.5 mg GAE/g dw). The most promising polyphenolic fractions exhibited dose-dependent anti-inflammatory activity in in vitro tests of lipoxygenase (IC50 in the range of 7.7–24.9 μg/U) and hyaluronidase (IC50 in the range of 16.4–29.3 μg/U) inhibition. They were also demonstrated to be a source of effective antioxidants, both in in vitro chemical tests (DPPH, FRAP, and TBARS) and in a biological model, in which at in vivo-relevant levels (1–5 μg/mL) they normalized/enhanced the nonenzymatic antioxidant capacity of human plasma and efficiently protected protein and lipid components of plasma against peroxynitrite-induced oxidative/nitrative damage. Moreover, the investigated extracts did not exhibit cytotoxicity towards human PMBCs. Among the nine Cotoneaster species tested, C. hjelmqvistii, C. zabelii, C. splendens, and C. bullatus possess the highest bioactive potential and might be recommended as dietary and functional food products.
Natural Product Research | 2018
Sławomira Nowak; Paweł Lisiecki; Anna Tomaszczak-Nowak; Ewa Grudzińska; Monika A. Olszewska; Agnieszka Kicel
Abstract Essential oils from flowers and leaves of Grindelia integrifolia DC. were investigated for the first time in terms of chemical composition and antimicrobial activity. The GC-FID/MS analysis allowed for the identification of 58 and 72 volatiles, comprising 92.4 and 90.1% of the oils, respectively. The major components of the flower oil were α-pinene (34.9%) and limonene (13.1%), while myrcene (16.9%), spathulenol (12.3%), β-eudesmol (11.9%) and limonene (10.1%) dominated among the leaf volatiles. The antimicrobial activity, evaluated against 12 selected bacteria and fungus, was found moderate, with the strongest effect of both oils observed against C. albicans (MIC = MBC: 0.63 and 0.31 mg/mL for flower and leaf oil, respectively).
Molecules | 2018
Agnieszka Kicel; Joanna Kolodziejczyk-Czepas; Aleksandra Owczarek; Anna Marchelak; Malgorzata Sopinska; Pawel Ciszewski; Pawel Nowak; Monika A. Olszewska
The present study investigated the phenolic profile and biological activity of dry extracts from leaves of C. bullatus, C. zabelii and C. integerrimus—traditional medicinal and dietary plants—and evaluated their potential in adjunctive therapy of cardiovascular diseases. Complementary UHPLC-PDA-ESI-MS3, HPLC-PDA-fingerprint, Folin-Ciocalteu, and n-butanol/HCl assays of the extracts derived by fractionated extraction confirmed that they are rich in structurally diverse polyphenols (47 analytes, content up to 650.8 mg GAE/g dw) with proanthocyanidins (83.3–358.2 mg CYE/g) dominating in C. bullatus and C. zabelii, and flavonoids (53.4–147.8 mg/g) in C. integerrimus. In chemical in vitro tests of pro-inflammatory enzymes (lipoxygenase, hyaluronidase) inhibition and antioxidant activity (DPPH, FRAP), the extracts effects were dose-, phenolic- and extraction solvent-dependent. The most promising polyphenolic extracts were demonstrated to be effective antioxidants in a biological model of human blood plasma—at in vivo-relevant levels (1–5 µg/mL) they normalized/enhanced the non-enzymatic antioxidant capacity of plasma and effectively prevented peroxynitrite-induced oxidative/nitrative damage of plasma proteins and lipids. As demonstrated in cytotoxicity tests, the extracts were safe—they did not affect viability of human peripheral blood mononuclear cells. In conclusion, Cotoneaster leaves may be useful in development of natural-based products, supporting the treatment of oxidative stress/inflammation-related chronic diseases, including cardiovascular disorders.
Frontiers in Pharmacology | 2018
Barbara Michalak; Agnieszka Filipek; Piotr Chomicki; Małgorzata Pyza; Marta Woźniak; Barbara Żyżyńska-Granica; Jakub P. Piwowarski; Agnieszka Kicel; Monika A. Olszewska; Anna K. Kiss
Aim of the study: Taking into account that overactivated leukocytes are an important factor in the development of many chronic diseases, we investigated the activity of phytochemically characterized (HPLC-DAD-MSn) extracts from forsythia leaves and flowers on the pro- and anti-inflammatory functions of leukocytes (effects on IL-1β, IL-8, TNF-α, and TGFβ release) and their adherence to endothelial cells. Using bio-guided fractionation, we isolated the active compounds and determined their biological activity, and we included the positive control quercetin. Methods: The effect on IL-1β, TNF-α, IL-8, and TGF-α production by leukocytes was measured by enzyme-linked immunosorbent assay (ELISA). The surface expression of adhesion molecules was analyzed with flow cytometry, and the neutrophil attachment to the endothelial cells was assessed fluorimetrically. The effects on p38MAPK, ERK1/2 and JNK phosphorylation were determined using western blots. Results: Leaf extracts had the effect of decreasing TNF-α production in neutrophils and monocyte/macrophage cells. The bio-guided fractionation led to the isolation of the following lignan aglycones: (+)-pinoresinol, (+)-epipinoresinol, (−)-matairesinol, (+)-phillygenin, and (−)-arctigenin. Only phillygenin was able to stimulate the anti-inflammatory function of macrophages by inducing TGF-β release and IL-10 receptor surface expression. Arctigenin, phillygenin, and a metabolite produced by the gut microbiota, enterolactone, decreased TNF-α and IL-1β production and neutrophil adhesion to endothelial cells, probably by attenuating the p38 and ERK kinase pathways. Conclusion: Forsythia x intermedia is a valuable source of active lignans, which may be potential candidates for treating inflammatory diseases that are associated with the excessive production of cytokines such as TNF-α and IL-1β.
Chemistry of Natural Compounds | 2012
Agnieszka Kicel; Maria Wolbis
0009-3130/12/4801-013