Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandra Owczarek is active.

Publication


Featured researches published by Aleksandra Owczarek.


Molecules | 2014

Polyphenolic Profile, Antioxidant and Anti-Inflammatory Activity of Eastern Teaberry (Gaultheria procumbens L.) Leaf Extracts.

Piotr Michel; Anna Dobrowolska; Agnieszka Kicel; Aleksandra Owczarek; Agnieszka Bazylko; Sebastian Granica; Jakub P. Piwowarski; Monika A. Olszewska

Dry leaf extracts of eastern teaberry (Gaultheria procumbens L.) were evaluated as a source of bioactive phytocompounds through systematic activity testing and phytochemical profiling. The antioxidant efficiency was tested using five complementary in vitro models (DPPH; FRAP; linoleic acid (LA) peroxidation assay; O2•− and H2O2 scavenging tests) in parallel with standard antioxidants. The 75% methanol extract and its diethyl ether, ethyl acetate (EAF), n-butanol and water fractions exhibited the dose-dependent responses in all assays, with the highest capacities found for EAF (DPPH EC50 = 2.9 μg/mL; FRAP = 12.8 mmol Fe2+/g; IC50 for LA-peroxidation = 123.9 μg/mL; O2•− SC50 = 3.9 μg/mL; H2O2 SC50 = 7.2 μg/mL). The EAF had also the highest anti-inflammatory activity in the inhibition tests of lipoxygenase and hyaluronidase (60.14% and 21.83% effects, respectively, at the concentration of 100 μg/mL). Activity parameters of the extracts correlated strongly with the levels of total phenolics (72.4–270.7 mg GAE/g), procyanidins, and phenolic acids, whereas for flavonoids only moderate effects were observed. Comprehensive UHPLC-PDA-ESI-MS3 and HPLC-PDA studies led to the identification of 35 polyphenols with a procyanidin A-type trimer, quercetin 3-O-glucuronide, isomers of caffeoylquinic acids, and (‒)-epicatechin being the dominant components. Significant activity levels, high phenolic contents and high extraction yields (39.4%–42.5% DW for defatted and crude methanol extracts, respectively) indicate the value of eastern teaberry leaves as bioactive products.


Molecules | 2016

Phenolic Profile and Antioxidant Potential of Leaves from Selected Cotoneaster Medik. Species

Agnieszka Kicel; Piotr Michel; Aleksandra Owczarek; Anna Marchelak; Dorota Żyżelewicz; Grażyna Budryn; Joanna Oracz; Monika A. Olszewska

The antioxidant efficiency of 70% aqueous methanolic extracts from the leaves of twelve selected Cotoneaster Medik. species was evaluated using four complementary in vitro tests based on SET- (single electron transfer) and HAT-type (hydrogen atom transfer) mechanisms (DPPH, FRAP, O2•− and H2O2 scavenging assays). The samples exhibited the dose-dependent responses in all assays with activity parameters of EC50 = 18.5–34.5 µg/mL for DPPH; 0.9–3.8 mmol Fe2+/g for FRAP; SC50 = 27.7–74.8 µg/mL for O2•−; and SC50 = 29.0–91.3 µg/mL for H2O2. Significant linear correlations (|r| = 0.76–0.97, p < 0.01) between activity parameters and total contents of phenolics (5.2%–15.4% GAE) and proanthocyanidins (2.1%–15.0% CYE), with weak or no effects for chlorogenic acid isomers (0.69%–2.93%) and total flavonoids (0.28%–1.40%) suggested that among the listed polyphenols, proanthocyanidins are the most important determinants of the tested activity. UHPLC-PDA-ESI-QTOF-MS analyses led to detection of 34 polyphenols, of which 10 B-type procyanidins, 5 caffeoylquinic acids and 14 flavonoids were identified. After cluster analysis of the data matrix, the leaves of Cotoneaster zabelii, C. splendens, C. bullatus, C. divaricatus, C. hjelmqvistii and C. lucidus were selected as the most promising sources of natural antioxidants, exhibiting the highest phenolic levels and antioxidant capacities, and therefore the greatest potential for pharmaceutical applications.


Molecules | 2017

Metabolite Profiling of Eastern Teaberry (Gaultheria procumbens L.) Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity

Piotr Michel; Aleksandra Owczarek; Magdalena Matczak; Martyna Kosno; Paweł Szymański; Elżbieta Mikiciuk-Olasik; Anna Kilanowicz; Wiktor Wesołowski; Monika A. Olszewska

The phytochemical profile and anti-inflammatory activity of Gaultheria procumbens dry lipophilic leaf extracts were evaluated. Forty compounds were identified by GC-MS, representing 86.36% and 81.97% of the petroleum ether (PE) and chloroform (CHE) extracts, respectively, with ursolic acid (28.82%), oleanolic acid (10.11%), methyl benzoate (10.03%), and methyl salicylate (6.88%) dominating in CHE, and methyl benzoate (21.59%), docosane (18.86%), and octacosane (11.72%) prevailing in PE. Three components of CHE were fully identified after flash chromatography isolation and spectroscopic studies as (6S,9R)-vomifoliol (4.35%), 8-demethyl-latifolin (1.13%), and 8-demethylsideroxylin (2.25%). Hyaluronidase and lipoxygenase inhibitory activity was tested for CHE (IC50 = 282.15 ± 10.38 μg/mL and 899.97 ± 31.17 μg/mL, respectively), PE (IC50 = 401.82 ± 16.12 μg/mL and 738.49 ± 15.92 μg/mL), and nine of the main constituents versus heparin (IC50 = 366.24 ± 14.72 μg/mL) and indomethacin (IC50 = 92.60 ± 3.71 μg/mL) as positive controls. With the best activity/concentration relationships, ursolic and oleanolic acids were recommended as analytical markers for the extracts and plant material. Seasonal variation of both markers following foliar development was investigated by UHPLC-PDA. The highest levels of ursolic (5.36–5.87 mg/g DW of the leaves) and oleanolic (1.14–1.26 mg/g DW) acids were observed between August and October, indicating the optimal season for harvesting.


Frontiers in Pharmacology | 2017

Bioactivity Potential of Prunus spinosa L. Flower Extracts: Phytochemical Profiling, Cellular Safety, Pro-inflammatory Enzymes Inhibition and Protective Effects Against Oxidative Stress In Vitro

Anna Marchelak; Aleksandra Owczarek; Magdalena Matczak; Adam Pawlak; Joanna Kolodziejczyk-Czepas; Pawel Nowak; Monika A. Olszewska

Flower extracts of Prunus spinosa L. (blackthorn)—a traditional medicinal plant of Central and Eastern Europe indicated for the treatment of urinary tract disorders, inflammation, and adjunctive therapy of cardiovascular diseases—were evaluated in terms of chemical composition, antioxidant activity, potential anti-inflammatory effects, and cellular safety in function of fractionated extraction. The UHPLC-PDA-ESI-MS3 fingerprinting led to full or partial identification of 57 marker constituents (36 new for the flowers), mostly flavonoids, A-type proanthocyanidins, and phenolic acids, and provided the basis for authentication and standardization of the flower extracts. With the contents up to 584.07 mg/g dry weight (dw), 490.63, 109.43, and 66.77 mg/g dw of total phenolics (TPC), flavonoids, proanthocyanidins, and phenolic acids, respectively, the extracts were proven to be rich sources of polyphenols. In chemical in vitro tests of antioxidant (DPPH, FRAP, TBARS) and enzyme (lipoxygenase and hyaluronidase) inhibitory activity, the extracts effects were profound, dose-, phenolic-, and extraction solvent-dependent. Moreover, at in vivo-relevant levels (1–5 μg/mL) the extracts effectively protected the human plasma components against peroxynitrite-induced damage (reduced the levels of oxidative stress biomarkers: 3-nitrotyrosine, lipid hydroperoxides, and thiobarbituric acid-reactive substances) and enhanced the total antioxidant status of plasma. The effects observed in biological models were in general dose- and TPC-dependent; only for protein nitration the relationships were not significant. Furthermore, in cytotoxicity tests, the extracts did not affect the viability of human peripheral blood mononuclear cells (PBMC), and might be regarded as safe. Among extracts, the defatted methanol-water (7:3, v/v) extract and its diethyl ether and ethyl acetate fractions appear to be the most advantageous for biological applications. As compared to the positive controls, activity of the extracts was favorable, which might be attributed to some synergic effects of their constituents. In conclusion, this research proves that the antioxidant and enzyme inhibitory capacity of phenolic fractions should be counted as one of the mechanisms behind the activity of the flowers reported by traditional medicine and demonstrates the potential of the extracts as alternative ingredients for functional products supporting the treatment of oxidative stress-related pathologies cross-linked with inflammatory changes, especially in cardiovascular protection.


Talanta | 2019

A validated 1H qNMR method for direct and simultaneous quantification of esculin, fraxin and (–)-epicatechin in Hippocastani cortex

Aleksandra Owczarek; Arkadiusz Kłys; Monika A. Olszewska

A fast and precise qNMR method was developed for quantification of major bioactive constituents in the bark of horse chestnut and dry extracts prepared thereof. The method was optimised using 600 MHz spectrometer, and the final acquisition parameters (90°-pulse, acquisition time - 3.0 s, relaxation delay - 27 s, number of transients - 16) allowed for performing of quantitative experiments in under 15 min. The contents of three analytes were determined using specific 1H resonances at δ7.45 ppm for esculin, δ5.00 ppm for fraxin, and δ5.94 ppm for (-)-epicatechin. The validation showed good precision (RSD < 1.5%) and accuracy (95-103%), and adequate sensitivity (LODs in the range of 3.3-5.9 µg) of the measurements. The determined levels in commercial samples of Hippocastani cortex were in the range of 25.89-38.94 mg/g dry weight (dw) of the bark for esculin, 12.58-17.13 mg/g dw for fraxin and 10.42-13.96 mg/g dw for (-)-epicatechin, and in the dry extracts prepared thereof 97.02-143.51 mg/g, 45.78-58.92 mg/g and 28.07-46.29 mg/g, respectively. The obtained results were cross-validated by a HPLC-PDA method with the use of a fused-core column, and no statistical differences were found between the results obtained by both methodologies, but with the advantage of higher precision of the qNMR assay. The relevant variability in quantitative composition of the commercial samples emphasise the need to introduce quality control studies in production of preparations containing horse chestnut bark and the developed method was proved suitable for this purpose.


Oxidative Medicine and Cellular Longevity | 2018

Multifunctional Phytocompounds in Cotoneaster Fruits: Phytochemical Profiling, Cellular Safety, Anti-Inflammatory and Antioxidant Effects in Chemical and Human Plasma Models In Vitro

Agnieszka Kicel; Joanna Kolodziejczyk-Czepas; Aleksandra Owczarek; Magdalena Rutkowska; Anna Wajs-Bonikowska; Sebastian Granica; Pawel Nowak; Monika A. Olszewska

The work presents the results of an investigation into the molecular background of the activity of Cotoneaster fruits, providing a detailed description of their phytochemical composition and some of the mechanisms of their anti-inflammatory and antioxidant effects. GS-FID-MS and UHPLC-PDA-ESI-MS3 methods were applied to identify the potentially health-beneficial constituents of lipophilic and hydrophilic fractions, leading to the identification of fourteen unsaturated fatty acids (with dominant linoleic acid, 375.4–1690.2 mg/100 g dw), three phytosterols (with dominant β-sitosterol, 132.2–463.3 mg/100 g), two triterpenoid acids (10.9–54.5 mg/100 g), and twenty-six polyphenols (26.0–43.5 mg GAE/g dw). The most promising polyphenolic fractions exhibited dose-dependent anti-inflammatory activity in in vitro tests of lipoxygenase (IC50 in the range of 7.7–24.9 μg/U) and hyaluronidase (IC50 in the range of 16.4–29.3 μg/U) inhibition. They were also demonstrated to be a source of effective antioxidants, both in in vitro chemical tests (DPPH, FRAP, and TBARS) and in a biological model, in which at in vivo-relevant levels (1–5 μg/mL) they normalized/enhanced the nonenzymatic antioxidant capacity of human plasma and efficiently protected protein and lipid components of plasma against peroxynitrite-induced oxidative/nitrative damage. Moreover, the investigated extracts did not exhibit cytotoxicity towards human PMBCs. Among the nine Cotoneaster species tested, C. hjelmqvistii, C. zabelii, C. splendens, and C. bullatus possess the highest bioactive potential and might be recommended as dietary and functional food products.


Molecules | 2018

Polyphenol-Rich Extracts from Cotoneaster Leaves Inhibit Pro-Inflammatory Enzymes and Protect Human Plasma Components against Oxidative Stress In Vitro

Agnieszka Kicel; Joanna Kolodziejczyk-Czepas; Aleksandra Owczarek; Anna Marchelak; Malgorzata Sopinska; Pawel Ciszewski; Pawel Nowak; Monika A. Olszewska

The present study investigated the phenolic profile and biological activity of dry extracts from leaves of C. bullatus, C. zabelii and C. integerrimus—traditional medicinal and dietary plants—and evaluated their potential in adjunctive therapy of cardiovascular diseases. Complementary UHPLC-PDA-ESI-MS3, HPLC-PDA-fingerprint, Folin-Ciocalteu, and n-butanol/HCl assays of the extracts derived by fractionated extraction confirmed that they are rich in structurally diverse polyphenols (47 analytes, content up to 650.8 mg GAE/g dw) with proanthocyanidins (83.3–358.2 mg CYE/g) dominating in C. bullatus and C. zabelii, and flavonoids (53.4–147.8 mg/g) in C. integerrimus. In chemical in vitro tests of pro-inflammatory enzymes (lipoxygenase, hyaluronidase) inhibition and antioxidant activity (DPPH, FRAP), the extracts effects were dose-, phenolic- and extraction solvent-dependent. The most promising polyphenolic extracts were demonstrated to be effective antioxidants in a biological model of human blood plasma—at in vivo-relevant levels (1–5 µg/mL) they normalized/enhanced the non-enzymatic antioxidant capacity of plasma and effectively prevented peroxynitrite-induced oxidative/nitrative damage of plasma proteins and lipids. As demonstrated in cytotoxicity tests, the extracts were safe—they did not affect viability of human peripheral blood mononuclear cells. In conclusion, Cotoneaster leaves may be useful in development of natural-based products, supporting the treatment of oxidative stress/inflammation-related chronic diseases, including cardiovascular disorders.


Industrial Crops and Products | 2015

Application of HPCCC, UHPLC-PDA-ESI-MS3 and HPLC-PDA methods for rapid, one-step preparative separation and quantification of rutin in Forsythia flowers

Agnieszka Kicel; Aleksandra Owczarek; Piotr Michel; Krystyna Skalicka-Woźniak; Anna K. Kiss; Monika A. Olszewska


Acta Poloniae Pharmaceutica | 2013

INVESTIGATION INTO BIOLOGICALLY ACTIVE CONSTITUENTS OF GEUM RIVALE L.

Aleksandra Owczarek; Jan Gudej


Phytochemistry Letters | 2017

Variation in polyphenolic profile and in vitro antioxidant activity of eastern teaberry (Gaultheria procumbens L.) leaves following foliar development

Piotr Michel; Aleksandra Owczarek; Martyna Kosno; Daniel Gontarek; Magdalena Matczak; Monika A. Olszewska

Collaboration


Dive into the Aleksandra Owczarek's collaboration.

Top Co-Authors

Avatar

Monika A. Olszewska

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Kicel

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Piotr Michel

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Anna Marchelak

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Magdalena Matczak

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martyna Kosno

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Sebastian Granica

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Adam Pawlak

Medical University of Łódź

View shared research outputs
Researchain Logo
Decentralizing Knowledge