Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnieszka Sulima is active.

Publication


Featured researches published by Agnieszka Sulima.


Journal of Cerebral Blood Flow and Metabolism | 2008

Brain redox imaging using blood–brain barrier-permeable nitroxide MRI contrast agent

Fuminori Hyodo; Kai-Hsiang Chuang; Artem G. Goloshevsky; Agnieszka Sulima; Gary L. Griffiths; James B. Mitchell; Alan P. Koretsky; Murali C. Krishna

Reactive oxygen species (ROS) and compromised antioxidant defense may contribute to brain disorders such as stroke, amyotrophic lateral sclerosis, etc. Nitroxides are redox-sensitive paramagnetic contrast agents and antioxidants. The ability of a blood—brain barrier (BBB)-permeable nitroxide, methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (MC-P), as a magnetic resonance-imaging (MRI) contrast agent for brain tissue redox imaging was tested. MC-P relaxation in rodent brain was quantified by MRI using a fast Look-Locker T1-mapping sequence. In the cerebral cortex and thalamus, the MRI signal intensity increased up to 50% after MC-P injection, but increased only by 2.7% when a BBB-impermeable nitroxide, 3CxP (3-carboxy-2,2,5,5,5-tetramethylpyrrolidine-1-oxyl) was used. The maximum concentrations in the thalamus and cerebral cortex after MC-P injection were calculated to be 1.9±0.35 and 3.0±0.50 mmol/L, respectively. These values were consistent with the ex vivo data of brain tissue and blood concentration obtained by electron paramagnetic resonance (EPR) spectroscopy. Also, reduction rates of MC-P were significantly decreased after reperfusion following transient MCAO (middle cerebral artery occlusion), a condition associated with changes in redox status resulting from oxidative damage. These results show the use of BBB-permeable nitroxides as MRI contrast agents and antioxidants to evaluate the role of ROS in neurologic diseases.


Journal of Medicinal Chemistry | 2008

Probes for narcotic receptor mediated phenomena. 37. Synthesis and opioid binding affinity of the final pair of oxide-bridged phenylmorphans, the ortho- and para-b-isomers and their N-phenethyl analogues, and the synthesis of the N-phenethyl analogues of the ortho- and para-d-isomers.

Muneaki Kurimura; Hehua Liu; Agnieszka Sulima; Akihiro Hashimoto; Anna K. Przybyl; Etsuo Ohshima; Shinichi Kodato; Jeffrey R. Deschamps; Christina M. Dersch; Richard B. Rothman; Yong Sok Lee; Arthur E. Jacobson; Kenner C. Rice

In the isomeric series of 12 racemic topologically rigid N-methyl analogues of oxide-bridged phenylmorphans, all but two of the racemates, the ortho- and para-b-oxide-bridged phenylmorphans 20 and 12, have remained to be synthesized. The b-isomers were very difficult to synthesize because of the highly strained 5,6-trans-fused ring junction that had to be formed. Our successful strategy required functionalization of the position para (or ortho) to a fluorine atom on the aromatic ring using an electron-withdrawing nitro group to activate that fluorine. The racemic N-phenethyl analogues 24 and 16 were moderately potent kappa-receptor antagonists in the [(35)S]GTPgammaS assay. We synthesized the N-phenethyl-substituted oxide-bridged phenylmorphans in the ortho- and para-d-oxide-bridged phenylmorphan series (51 and 52) which had not been previously evaluated using contemporary receptor binding assays to see whether they also have higher affinity for opioid receptors than their N-methyl relatives 46 and 47.


Journal of Biological Inorganic Chemistry | 2015

Evaluation of fluorophore-tethered platinum complexes to monitor the fate of cisplatin analogs

Justin C. Jagodinsky; Agnieszka Sulima; Yiqi Cao; Joanna E. Poprawski; Burchelle Blackman; John R. Lloyd; Rolf E. Swenson; Michael M. Gottesman; Matthew D. Hall

The platinum drugs cisplatin, carboplatin, and oxaliplatin are highly utilized in the clinic and as a consequence have been extensively studied in the laboratory setting, sometimes by generating fluorophore-tagged analogs. Here, we synthesized two Pt(II) complexes containing ethane-1,2-diamine ligands linked to a BODIPY fluorophore, and compared their biological activity with previously reported Pt(II) complexes conjugated to carboxyfluorescein and carboxyfluorescein diacetate. The cytotoxicity and DNA damage capacity of Pt–fluorophore complexes was compared to cisplatin, and the Pt–BODIPY complexes were found to be more cytotoxic with reduced cytotoxicity in cisplatin-resistant cells. Microscopy revealed a predominately cytosolic localization, with nuclear distribution at higher concentrations. Spheroids grown from parent and resistant cells revealed penetration of Pt–BODIPY into spheroids, and retention of the cisplatin-resistant spheroid phenotype. While most activity profiles were retained for the Pt–BODIPY complexes, accumulation in resistant cells was only slightly affected, suggesting that some aspects of Pt–fluorophore cellular pharmacology deviate from cisplatin.


Magnetic Resonance in Chemistry | 2012

Z and E rotamers of N-formyl-1-bromo-4-hydroxy-3-methoxymorphinan-6-one and their interconversion as studied by 1H/13C NMR spectroscopy and quantum chemical calculations.

Agnieszka Sulima; Kejun Cheng; Arthur E. Jacobson; Kenner C. Rice; Klaus Gawrisch; Yong-Sok Lee

N‐Formyl‐1‐bromo‐4‐hydroxy‐3‐methoxymorphinan‐6‐one (compound 2), an important intermediate in the NIH Opiate Total Synthesis, presumably exists as a mixture of two rotamers (Z and E) in both CHCl3 and DMSO at room temperature due to the hindered rotation of its N‐C18 bond in the amide moiety. By comparing the experimental 1H and 13C chemical shifts of a single rotamer and the mixture of compound 2 in CDCl3 with the calculated chemical shifts of the geometry optimized Z and E rotamers utilizing density functional theory, the crystalline rotamer of compound 2 was characterized as having the E configuration. The energy barrier between the two rotamers was also determined with the temperature dependence of 1H and 13C NMR coalescence experiments, and then compared with that from the reaction path for the interconversion of the two rotamers calculated at the level of B3LYP/6‐31G*. Detailed geometry of the ground state and the transition states of both rotamers are given and discussed. Copyright


Journal of Pharmacology and Experimental Therapeutics | 2016

Characterization of the Discriminative Stimulus Effects of a NOP Receptor Agonist Ro 64-6198 in Rhesus Monkeys

Phillip A. Saccone; Kathy A. Zelenock; Angela M. Lindsey; Agnieszka Sulima; Kenner C. Rice; Eric Prinssen; Jürgen Wichmann; James H. Woods

Nociceptin/orphanin FQ receptor (NOP) agonists have been reported to produce antinociceptive effects in rhesus monkeys with comparable efficacy to μ-opioid receptor (MOP) agonists, but without their limiting side effects. There are also known to be species differences between rodents and nonhuman primates (NHPs) in the behavioral effects of NOP agonists. The aims of this study were the following: 1) to determine if the NOP agonist Ro 64-6198 could be trained as a discriminative stimulus; 2) to evaluate its pharmacological selectivity as a discriminative stimulus; and 3) to establish the order of potency with which Ro 64-6198 produces discriminative stimulus effects compared with analgesic effects in NHPs. Two groups of rhesus monkeys were trained to discriminate either fentanyl or Ro 64-6198 from vehicle. Four monkeys were trained in the warm-water tail-withdrawal procedure to measure antinociception. Ro 64-6198 produced discriminative stimulus effects that were blocked by the NOP antagonist J-113397 and not by naltrexone. The discriminative stimulus effects of Ro 64-6198 partially generalized to diazepam, but not to fentanyl, SNC 80, ketocyclazocine, buprenorphine, phencyclidine, or chlorpromazine. Fentanyl produced stimulus effects that were blocked by naltrexone and not by J-113397, and Ro 64-6198 did not produce fentanyl-appropriate responding in fentanyl-trained animals. In measures of antinociception, fentanyl, but not Ro 64-6198, produced dose-dependent increases in tail-withdrawal latency. Together, these results demonstrate that Ro 64-6198 produced stimulus effects in monkeys that are distinct from other opioid receptor agonists, but may be somewhat similar to diazepam. In contrast to previous findings, Ro 64-6198 did not produce antinociception in the majority of animals tested even at doses considerably greater than those that produced discriminative stimulus effects.


Nuclear Medicine and Biology | 2012

Synthesis of ApoSense compound [18F]2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-(fluoromethyl)butanoic acid ([18F]NST732) by nucleophilic ring opening of an aziridine precursor

Falguni Basuli; Haitao Wu; Zhen-Dan Shi; Bao Teng; Changhui Li; Agnieszka Sulima; Aaron Bate; Philip Young; Mathew McMillan; Gary L. Griffiths

INTRODUCTION The small molecule 2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-(fluoromethyl)butanoic acid (NST732) is a member of the ApoSense family of compounds, capable of selective targeting, binding and accumulation within cells undergoing apoptotic cell death. It has application in molecular imaging and blood clotting particularly for monitoring antiapoptotic drug treatments. We are investigating a fluorine-18-radiolabeled analog of this compound for positron emission tomography studies. METHODS We prepared the tosylate precursor methyl 2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-(tosyloxymethyl)butanoate (4) to synthesize fluorine-18-labeled NST732. Fluorination reaction of the tosylate precursor in 1:1 acetonitrile:dimethylsulfoxide with tetrabutyl ammonium fluoride proceeds through an aziridine intermediate (4A) to afford two regioisomers: 2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-fluorobutanoate (5) and methyl 2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-(fluoromethyl)butanoate (6). Acid hydrolysis of the fluoromethylbutanoate (6) isomer produced NST732. As the fluorination reaction of the tosylate precursor proceeds through an aziridine intermediate (4A) and the fluorination conceivably could be done directly on the aziridine, we have separately prepared an aziridine precursor (4A). Fluorine-18 labeling of the aziridine precursor (4A) was performed with [(18)F]tetrabutyl ammonium fluoride to afford the same two regioisomers (5 and 6). The [18F]2-((5-dimethylamino)naphthalene-1-sulfonamido)methyl)-2-fluorobutanoic acid (NST732) was then obtained by the hydrolysis of corresponding [18F]-labeled ester (6) with 6 N hydrochloric acid. RESULTS Two regioisomers obtained from the fluorination reaction of aziridine were easily separated by high-performance liquid chromatography. The total radiochemical yield was 15%±3% (uncorrected, n=18) from the aziridine precursor in a 70-min synthesis time with a radiochemical purity>99%. CONCLUSION Fluorine-18-labeled ApoSense compound [18F]NST732 is prepared in moderate yield by direct fluorination of an aziridine precursor.


Neuropsychopharmacology | 2017

3,4-Methylenedioxymethamphetamine Increases Affiliative Behaviors in Squirrel Monkeys in a Serotonin 2A Receptor-Dependent Manner

Elizabeth G. Pitts; Adelaide Rose Minerva; Erika B Chandler; Jordan N Kohn; Meghan T Logun; Agnieszka Sulima; Kenner C. Rice; Leonard L. Howell

3,4-Methylenedioxymethamphetamine (MDMA) increases sociality in humans and animals. Release of serotonin (5-HT) is thought to have an important role in the increase in social behaviors, but the mechanisms underlying these effects are poorly understood. Despite the advantages of nonhuman primate models, no studies have examined the mechanisms of the social effects of MDMA in nonhuman primates. The behavior and vocalizations of four group-housed squirrel monkeys were examined following administration of MDMA, its enantiomers, and methamphetamine. 5-HT receptor antagonists and agonists were given as drug pretreatments. Data were analyzed using linear mixed-effects models. MDMA and its enantiomers increased affiliative social behaviors and vocalizations, whereas methamphetamine had only modest effects on affiliative behaviors. Pretreatment with a 5-HT2A receptor antagonist and a 5-HT2C receptor agonist attenuated the MDMA-induced increase in social behaviors, while a 5-HT1A receptor antagonist did not alter affiliative vocalizations and increased MDMA-induced social contact. Nonhuman primates show MDMA-specific increases in affiliative social behaviors following MDMA administration, in concordance with human and rodent studies. MDMA-induced increases in social behaviors are 5-HT2A, but not 5-HT1A, receptor dependent. Understanding the neurochemical mechanisms mediating the prosocial effects of MDMA could help in the development of novel therapeutics with the unique social effects of MDMA but fewer of its limitations.


Journal of Pharmacology and Experimental Therapeutics | 2017

Inhibition of cocaine and 3,4-methylenedioxypyrovalerone (MDPV) self-administration by lorcaserin is mediated by 5-HT2C receptors in rats

Brenda M. Gannon; Agnieszka Sulima; Kenner C. Rice; Gregory T. Collins

Lorcaserin is a serotonin (5-HT)2C receptor-preferring agonist approved by the US Food and Drug Administration to treat obesity. Lorcaserin decreases cocaine self-administration in rats and monkeys. Although this effect is partially inhibited by a 5-HT2C receptor antagonist (SB242084), lorcaserin also has effects at 5-HT2A and 5-HT1A receptors, and the relative contribution of these receptors to its anti-cocaine effects has not been investigated. The goals of this study were to determine 1) the potency and effectiveness of lorcaserin to decrease self-administration of cocaine and 3,4-methylenedioxypyrovalerone (MDPV), a common “bath salts” constituent; and 2) the receptor(s) mediating the effects of lorcaserin on cocaine and MDPV self-administration. Male Sprague-Dawley rats (n = 6) were trained to self-administer MDPV under a progressive ratio schedule of reinforcement and maintained under this schedule with daily access to 0.32 mg/kg per infusion of cocaine or 0.032 mg/kg per infusion of MDPV. Dose-response curves for the effects of lorcaserin on cocaine and MDPV self-administration were generated by administering lorcaserin (0.1–5.6 mg/kg) 25 minutes before the start of the session. To assess the effects of 5-HT2C (SB242084, 0.1 mg/kg), 5-HT2A (MDL100907, 0.1 mg/kg), and 5-HT1A (WAY100635, 0.178 mg/kg) receptor antagonists, they were administered 15 minutes before lorcaserin. Lorcaserin decreased cocaine and MDPV self-administration with equal potency. Antagonism of 5-HT2C (but not 5-HT1A or 5-HT2A) receptors blocked the effects of lorcaserin on cocaine and MDPV self-administration. Taken together, these data provide additional support for further development of 5-HT2C receptor agonists, such as lorcaserin, for the treatment of stimulant abuse.


Journal of Hepatology | 2017

High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver

Emily S. Wires; Kathleen A. Trychta; Susanne Bäck; Agnieszka Sulima; Kenner C. Rice; Brandon K. Harvey

BACKGROUND & AIMS Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. METHODS A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. RESULTS Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. CONCLUSIONS Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during administration of dantrolene, a drug that stabilizes ER calcium. The study describes a novel technique for liver research and provides insight into cellular processes that may contribute to the pathogenesis of obesity and fatty liver disease.


Steroids | 2005

A concise method for the preparation of deuterium-labeled cortisone: Synthesis of [6,7-2H]cortisone

Agnieszka Sulima; Thomas E. Prisinzano; Thomas F. Spande; Jeffrey R. Deschamps; Noel Whittaker; Zeev Hochberg; Arthur E. Jacobson; Kenner C. Rice

A method is described for the synthesis of isotopically labeled cortisone from commercially available cortisone acetate through a Delta(4,6)-dieneone. Direct deuteration of the dienone acetate with various catalysts in different solvent systems failed to give an isolable product. Initial hydrolysis of the side-chain ester of the Delta(4,6)-dieneone and subsequent derivatization gave the key intermediate, 17alpha,20;20,21-bismethylenedioxy-pregna-4,6-diene-3,11-dione, which could be satisfactorily deuterated to the desired product. The availability of [6,7-(2)H]cortisone will provide a tool for the future study of the metabolism of cortisone in human tissues.

Collaboration


Dive into the Agnieszka Sulima's collaboration.

Top Co-Authors

Avatar

Kenner C. Rice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Haitao Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arthur E. Jacobson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gary L. Griffiths

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Changhui Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhen-Dan Shi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Biying Xu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Brenda M. Gannon

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Falguni Basuli

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gregory T. Collins

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge