Agnieszka Zylicz-Stachula
University of Gdańsk
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Agnieszka Zylicz-Stachula.
Microbial Cell Factories | 2014
Agnieszka Zylicz-Stachula; Olga Zolnierkiewicz; Katarzyna Sliwinska; Joanna Jezewska-Frackowiak; Piotr M. Skowron
BackgroundAn industrial approach to protein production demands maximization of cloned gene expression, balanced with the recombinant host’s viability. Expression of toxic genes from thermophiles poses particular difficulties due to high GC content, mRNA secondary structures, rare codon usage and impairing the host’s coding plasmid replication.TaqII belongs to a family of bifunctional enzymes, which are a fusion of the restriction endonuclease (REase) and methyltransferase (MTase) activities in a single polypeptide. The family contains thermostable REases with distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI and a few enzymes found in mesophiles. While not being isoschizomers, the enzymes exhibit amino acid (aa) sequence homologies, having molecular sizes of ~120 kDa share common modular architecture, resemble Type-I enzymes, cleave DNA 11/9 nt from the recognition sites, their activity is affected by S-adenosylmethionine (SAM).ResultsWe describe the taqIIRM gene design, cloning and expression of the prototype TaqII. The enzyme amount in natural hosts is extremely low. To improve expression of the taqIIRM gene in Escherichia coli (E. coli), we designed and cloned a fully synthetic, low GC content, low mRNA secondary structure taqIIRM, codon-optimized gene under a bacteriophage lambda (λ) PR promoter. Codon usage based on a modified ‘one amino acid–one codon’ strategy, weighted towards low GC content codons, resulted in approximately 10-fold higher expression of the synthetic gene. 718 codons of total 1105 were changed, comprising 65% of the taqIIRM gene. The reason for we choose a less effective strategy rather than a resulting in high expression yields ‘codon randomization’ strategy, was intentional, sub-optimal TaqII in vivo production, in order to decrease the high ‘toxicity’ of the REase-MTase protein.ConclusionsRecombinant wt and synthetic taqIIRM gene were cloned and expressed in E. coli. The modified ‘one amino acid–one codon’ method tuned for thermophile-coded genes was applied to obtain overexpression of the ‘toxic’ taqIIRM gene. The method appears suited for industrial production of thermostable ‘toxic’ enzymes in E. coli. This novel variant of the method biased toward increasing a gene’s AT content may provide economic benefits for industrial applications.
BMC Molecular Biology | 2013
Piotr M. Skowron; Jolanta Vitkute; Danute Ramanauskaite; Goda Mitkaite; Joanna Jezewska-Frackowiak; Joanna Zebrowska; Agnieszka Zylicz-Stachula; Arvydas Lubys
BackgroundIn continuing our research into the new family of bifunctional restriction endonucleases (REases), we describe the cloning of the tsoIRM gene. Currently, the family includes six thermostable enzymes: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI, TsoI, isolated from various Thermus sp. and two thermolabile enzymes: RpaI and CchII, isolated from mesophilic bacteria Rhodopseudomonas palustris and Chlorobium chlorochromatii, respectively. The enzymes have several properties in common. They are large proteins (molecular size app. 120 kDa), coded by fused genes, with the REase and methyltransferase (MTase) in a single polypeptide, where both activities are affected by S-adenosylmethionine (SAM). They recognize similar asymmetric cognate sites and cleave at a distance of 11/9 nt from the recognition site. Thus far, we have cloned and characterised TaqII, Tth111II, TthHB27I, TspGWI and TspDTI.ResultsTsoI REase, which originate from thermophilic Thermus scotoductus RFL4 (T. scotoductus), was cloned in Escherichia coli (E. coli) using two rounds of biochemical selection of the T. scotoductus genomic library for the TsoI methylation phenotype. DNA sequencing of restriction-resistant clones revealed the common open reading frame (ORF) of 3348 bp, coding for a large polypeptide of 1116 aminoacid (aa) residues, which exhibited a high level of similarity to Tth111II (50% identity, 60% similarity). The ORF was PCR-amplified, subcloned into a pET21 derivative under the control of a T7 promoter and was subjected to the third round of biochemical selection in order to isolate error-free clones. Induction experiments resulted in synthesis of an app. 125 kDa protein, exhibiting TsoI-specific DNA cleavage. Also, the wild-type (wt) protein was purified and reaction optima were determined.ConclusionsPreviously we identified and cloned the Thermus family RM genes using a specially developed method based on partial proteolysis of thermostable REases. In the case of TsoI the classic biochemical selection method was successful, probably because of the substantially lower optimal reaction temperature of TsoI (app. 10-15°C). That allowed for sufficient MTase activity in vivo in recombinant E. coli. Interestingly, TsoI originates from bacteria with a high optimum growth temperature of 67°C, which indicates that not all bacterial enzymes match an organism’s thermophilic nature, and yet remain functional cell components. Besides basic research advances, the cloning and characterisation of the new prototype REase from the Thermus sp. family enzymes is also of practical importance in gene manipulation technology, as it extends the range of available DNA cleavage specificities.
ChemBioChem | 2014
Agnieszka Zylicz-Stachula; Katarzyna Polska; Piotr M. Skowron; Janusz Rak
DNA strand breaks (SBs) are among the most cytotoxic forms of DNA damage, and their residual levels correlate directly with cell death. Hence, the type and amount of SBs is directly related to the efficacy of a given anticancer therapy. In this study, we describe a molecular tool that can differentiate between single (SSBs) and double (DSBs) strand breaks and also assess them quantitatively. Our method involves PCR amplification of a linear DNA fragment labeled with a sensitizing nucleotide, circularization of that fragment, and enzymatic introduction of supercoils to transform the circular relaxed form of the synthesized plasmid into a supercoiled one. After exposure of the molecule to a damaging factor, SSB and DSB levels can be easily assayed with gel electrophoresis. We applied this method to prepare an artificial plasmid labeled with 5‐bromo‐2′‐deoxyuridine and to assay SBs photoinduced in the synthesized plasmid.
Molecular Biology Reports | 2014
Agnieszka Zylicz-Stachula; Joanna Jeżewska-Frąckowiak; Piotr M. Skowron
We reported previously that TspGWI, a prototype enzyme of a new Thermus sp. family of restriction endonucleases-methyltransferases (REases-MTases), undergoes the novel phenomenon of sinefungin (SIN)-caused specificity transition. Here we investigated mutant TspGWI N473A, containing a single amino acid (aa) substitution in the NPPY motif of the MTase. Even though the aa substitution is located within the MTase polypeptide segment, DNA cleavage and modification are almost completely abolished, indicating that the REase and MTase are intertwined. Remarkably, the TspGWI N473A REase functionality can be completely reconstituted by the addition of SIN. We hypothesize that SIN binds specifically to the enzyme and restores the DNA cleavage-competent protein tertiary structure. This indicates the significant role of allosteric effectors in DNA cleavage in Thermus sp. enzymes. This is the first case of REase mutation suppression by an S-adenosylmethionine (SAM) cofactor analogue. Moreover, the TspGWI N473A clone strongly affects E. coli division control, acting as a ‘selfish gene’. The mutant lacks the competing MTase activity and therefore might be useful for applications in DNA manipulation. Here we present a case study of a novel strategy for REase activity/specificity alteration by a single aa substitution, based on the bioinformatic analysis of active motif locations, combining (a) aa sequence engineering (b) the alteration of protein enzymatic properties, and (c) the use of cofactor–analogue cleavage reconstitution and stimulation.
PLOS ONE | 2017
Daria Krefft; Aliaksei Papkov; Agnieszka Zylicz-Stachula; Piotr M. Skowron
Obtaining thermostable enzymes (thermozymes) is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes’ expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli). RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase) and a methyltransferase (MTase) in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus) produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt) gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified ‘codon randomization’ strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS) and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology, extending the palette of available REase specificities.
Molecular Biology Reports | 2016
Agnieszka Zylicz-Stachula; Joanna Zebrowska; Edyta Czajkowska; Weronika Wrese; Ewa Sulecka; Piotr M. Skowron
The aim of this study was to improve a useful molecular tool—TaqII restriction endonuclease-methyltransferase—by rational protein engineering, as well as to show an application of our novel method of restriction endonuclease activity modulation through a single amino acid change in the NPPY motif of methyltransferase. An amino acid change was introduced using site-directed mutagenesis into the taqIIRM gene. The mutated gene was expressed in Escherichia coli. The protein variant was purified and characterized. Previously, we described a TspGWI variant with an amino acid change in the methyltransferase motif IV. Here, we investigate a complex, pleiotropic effect of an analogous amino acid change on its homologue—TaqII. The methyltransferase activity is reduced, but not abolished, while TaqII restriction endonuclease can be reactivated by sinefungin, with an increased DNA recognition fidelity. The general method for engineering of the IIS/IIC/IIG restriction endonuclease activity/fidelity is developed along with the generation of an improved TaqII enzyme for biotechnological applications. A successful application of our novel strategy for restriction endonuclease activity/fidelity alteration, based on bioinformatics analyses, mutagenesis and the use of cofactor-analogue activity modulation, is presented.
PLOS ONE | 2018
Piotr M. Skowron; Andrew M. Kropinski; Joanna Zebrowska; Lukasz Janus; Kasjan Szemiako; Edyta Czajkowska; Natalia Maciejewska; Małgorzata Skowron; Joanna M. Łoś; Marcin Łoś; Agnieszka Zylicz-Stachula
Bacteriophage TP-84 is a well-characterized bacteriophage of historical interest. It is a member of the Siphoviridae, and infects a number of thermophilic Geobacillus (Bacillus) stearothermophilus strains. Its’ 47.7-kbp double-stranded DNA genome revealed the presence of 81 coding sequences (CDSs) coding for polypeptides of 4 kDa or larger. Interestingly, all CDSs are oriented in the same direction, pointing to a dominant transcription direction of one DNA strand. Based on a homology search, a hypothetical function could be assigned to 31 CDSs. No RNA or DNA polymerase-coding genes were found on the bacteriophage genome indicating that TP-84 relies on the host’s transcriptional and replication enzymes. The TP84 genome is tightly packed with CDSs, typically spaced by several-to-tens of bp or often overlapping. The genome contains five putative promoter-like sequences showing similarity to the host promoter consensus sequence and allowing for a 2-bp mismatch. In addition, ten putative rho-independent terminators were detected. Because the genome sequence shows essentially no similarity to any previously characterised bacteriophage, TP-84 should be considered a new species in an undefined genus within the Siphoviridae family. Thus a taxonomic proposal of a new Tp84virus genus has been accepted by the International Committee on Taxonomy of Viruses. The bioinformatics genome analysis was verified by confirmation of 33 TP-84 proteins, which included: a) cloning of a selected CDS in Escherichia coli, coding for a DNA single-stranded binding protein (SSB; gene TP84_63), b) purification and functional assays of the recombinant TP-84 SSB, which has been shown to improve PCR reactions, c) mass spectrometric (MS) analysis of TP-84 bacteriophage capsid proteins, d) purification of TP-84 endolysin activity, e) MS analysis of the host cells from infection time course.
Nucleic Acids Research | 2017
Piotr M. Skowron; Brian P. Anton; Edyta Czajkowska; Joanna Zebrowska; Ewa Sulecka; Daria Krefft; Joanna Jezewska-Frackowiak; Olga Zolnierkiewicz; Malgorzata Witkowska; Richard D. Morgan; Geoffrey G. Wilson; Alexey Fomenkov; Richard J. Roberts; Agnieszka Zylicz-Stachula
Abstract Two restriction–modification systems have been previously discovered in Thermus aquaticus YT-1. TaqI is a 263-amino acid (aa) Type IIP restriction enzyme that recognizes and cleaves within the symmetric sequence 5′-TCGA-3′. TaqII, in contrast, is a 1105-aa Type IIC restriction-and-modification enzyme, one of a family of Thermus homologs. TaqII was originally reported to recognize two different asymmetric sequences: 5′-GACCGA-3′ and 5′-CACCCA-3′. We previously cloned the taqIIRM gene, purified the recombinant protein from Escherichia coli, and showed that TaqII recognizes the 5′-GACCGA-3′ sequence only. Here, we report the discovery, isolation, and characterization of TaqIII, the third R–M system from T. aquaticus YT-1. TaqIII is a 1101-aa Type IIC/IIL enzyme and recognizes the 5′-CACCCA-3′ sequence previously attributed to TaqII. The cleavage site is 11/9 nucleotides downstream of the A residue. The enzyme exhibits striking biochemical similarity to TaqII. The 93% identity between their aa sequences suggests that they have a common evolutionary origin. The genes are located on two separate plasmids, and are probably paralogs or pseudoparalogs. Putative positions and aa that specify DNA recognition were identified and recognition motifs for 6 uncharacterized Thermus-family enzymes were predicted.
Journal of Biosciences | 2016
Joanna Zebrowska; Olga Zolnierkiewicz; Marta A. Skowron; Agnieszka Zylicz-Stachula; Joanna Jezewska-Frackowiak; Piotr M. Skowron
Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers’ biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5′-GCAGC(N8/12)-3′ DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-methyltransferases (MTases) and as a result, another putative REase-MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-MTases was detected.
BMC Molecular Biology | 2012
Agnieszka Zylicz-Stachula; Olga Zolnierkiewicz; Arvydas Lubys; Danute Ramanauskaite; Goda Mitkaite; Janusz M. Bujnicki; Piotr M. Skowron