Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agustín D. Martínez is active.

Publication


Featured researches published by Agustín D. Martínez.


Circulation Research | 2002

Connexin43 and Connexin45 Form Heteromeric Gap Junction Channels in Which Individual Components Determine Permeability and Regulation

Agustín D. Martínez; Volodya Hayrapetyan; Alonso P. Moreno; Eric C. Beyer

Two gap junction proteins, connexin43 (Cx43) and connexin45 (Cx45), are coexpressed in many cardiac and other cells. Homomeric channels formed by these proteins differ in unitary conductance, permeability, and regulation. We sought to determine the ability of Cx43 and Cx45 to oligomerize with each other to form heteromeric gap junction channels and to determine the functional and regulatory properties of these heteromeric channels. HeLa cells were transfected with Cx45 or (His)6-tagged Cx43 or sequentially transfected with both connexins. Immunoblots verified production of the transfected connexins, and immunofluorescence demonstrated that they were colocalized in the HeLa-Cx43(His)6/Cx45 cells. Connexons were solubilized from HeLa-Cx43(His)6/Cx45 cells by using Triton X-100 and were applied to a Ni2+-NTA column, which binds the His6 sequence. Cx45 was coeluted from the column with Cx43(His)6, demonstrating that some hemichannels contain both connexins. Single-channel recordings showed that the HeLa-Cx43(His)6/Cx45 cells exhibited single-channel conductances that were not observed in cells expressing either connexin alone. Dye-coupling experiments showed that HeLa-Cx43(His)6 cells readily passed Lucifer yellow and N-(2-aminoethyl)biotinamide hydrochloride (neurobiotin); in contrast, HeLa-Cx45 and HeLa-Cx43(His)6/Cx45 cells showed extensive intercellular passage of neurobiotin but little coupling with Lucifer yellow. Treatment with the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate reduced junctional conductance in cells expressing Cx43, Cx45, or both connexins, but it reduced the extent of neurobiotin transfer only in HeLa-Cx43(His)6 and HeLa-Cx43(His)6/Cx45 cells but not in the HeLa-Cx45 cells. Thus, biochemical and electrophysiological evidence suggests that Cx43 and Cx45 extensively mix to form heteromeric channels; however, individual connexin components dominate aspects of the physiological behavior of these channels.


Biophysical Journal | 2001

Heterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43.

Sergio Elenes; Agustín D. Martínez; Mario Delmar; Eric C. Beyer; Alonso P. Moreno

Immunohistochemical co-localization of distinct connexins (Cxs) in junctional areas suggests the formation of heteromultimeric channels. To determine the docking effects of the heterotypic combination of Cx43 and Cx45 on the voltage-gating properties of their channels, we transfected DNA encoding Cx43 or Cx45 into N2A neuroblastoma or HeLa cells. Using a double whole-cell voltage-clamp technique, we determined macroscopic and single-channel gating properties of the intercellular channels formed. Cx43-Cx45 heterotypic channels had rectifying properties where Cx45 connexons inactivated rapidly upon hyperpolarizing voltage pulses applied to the Cx45-expressing cell. During depolarizing pulses to the Cx45-expressing cell, Cx43 connexons inactivated with substantially reduced kinetics as compared with homotypic Cx43 channels. Similar slow kinetics was observed for homotypic Cx43M257 (truncation mutant). Heterotypic channels had a main conductance whose value was predicted by the sum of corresponding homomeric connexon conductances; it was not voltage dependent and had no detectable residual conductance. The voltage-gating kinetics of heterotypic channels and their single-channel behavior implicate a role for the Cx43 carboxyl-terminal domain in the fast gating mechanism and in the establishment of residual conductance. Our results also suggest that heterotypic docking may lead to conformational changes that inhibit this action of the Cx43 carboxyl-terminal domain.


Antioxidants & Redox Signaling | 2009

Gap-junction channels dysfunction in deafness and hearing loss.

Agustín D. Martínez; Rodrigo Acuña; Vania Figueroa; Jaime Maripillán; Bruce J. Nicholson

Gap-junction channels connect the cytoplasm of adjacent cells, allowing the diffusion of ions and small metabolites. They are formed at the appositional plasma membranes by a family of related proteins named connexins. Mutations in connexins 26, 31, 30, 32, and 43 have been associated with nonsyndromic or syndromic deafness. The majority of these mutations are inherited in an autosomal recessive manner, but a few of them have been associated with dominantly inherited hearing loss. Mutations in the connexin26 gene (GJB2) are the most common cause of genetic deafness. This review summarizes the most relevant and recent information about different mutations in connexin genes found in human patients, with emphasis on GJB2. The possible effects of the mutations on channel expression and function are discussed, in addition to their possible physiologic consequences for inner ear physiology. Finally, we propose that connexin channels (gap junctions and hemichannels) may be targets for age-related hearing loss induced by oxidative damage.


Molecular Biology of the Cell | 2008

Connexin Hemichannel Composition Determines the FGF-1–induced Membrane Permeability and Free [Ca2+]i Responses

Kurt A. Schalper; Nicolás Palacios-Prado; Mauricio A. Retamal; Kenji F. Shoji; Agustín D. Martínez; Juan C. Sáez

Cell surface hemichannels (HCs) composed of different connexin (Cx) types are present in diverse cells and their possible role on FGF-1-induced cellular responses remains unknown. Here, we show that FGF-1 transiently (4-14 h, maximal at 7 h) increases the membrane permeability through HCs in HeLa cells expressing Cx43 or Cx45 under physiological extracellular Ca(2+)/Mg(2+) concentrations. The effect does not occur in HeLa cells expressing HCs constituted of Cx26 or Cx43 with its C-terminus truncated at aa 257, or in parental nontransfected HeLa cells. The increase in membrane permeability is associated with a rise in HC levels at the cell surface and a proportional increase in HC unitary events. The response requires an early intracellular free Ca(2+) concentration increase, activation of a p38 MAP kinase-dependent pathway, and a regulatory site of Cx subunit C-terminus. The FGF-1-induced rise in membrane permeability is also associated with a late increase in intracellular free Ca(2+) concentration, suggesting that responsive HCs allow Ca(2+) influx. The cell density of Cx26 and Cx43 HeLa transfectants cultured in serum-free medium was differentially affected by FGF-1. Thus, the FGF-1-induced cell permeabilization and derived consequences depend on the Cx composition of HCs.


Cell Communication and Adhesion | 2001

Heteromeric Mixing of Connexins: Compatibility of Partners and Functional Consequences

Eric C. Beyer; Joanna Gemel; Agustín D. Martínez; Viviana M. Berthoud; Virginijus Valiunas; Alonso P. Moreno; Peter R. Brink

Cx43 is widely expressed in many different cell types, and many of these cells also express other connexins. If these connexins are capable of mixing, the functional properties of channels containing heteromeric connexons may substantially influence intercellular communication between such cells. We used biochemical strategies (sedimentation through sucrose gradients, co-immunoprecipitation, or co-purification by Ni-NTA chromatography) to examine heteromeric mixing of Cx43 with other connexins (including Cx26, Cx37, Cx40, Cx45, and Cx56) in transfected cells. These analyses showed that all of the tested connexins except Cx26 formed heteromeric connexons with Cx43. We used the double whole-cell patch-camp technique to analyze the electrophysiological properties of gap junction channels in pairs of co-expressing cells. Cx37 and Cx45 made a large variety of functional heteromeric combinations with Cx43 based on detection of many different single channel conductances. Most of the channel event sizes observed in cells co-expressing Cx40 and Cx43 were similar to those of homomeric Cx43 or Cx40 hemichannels in homo- or hetero-typic configurations. Our data suggest several different possible consequences of connexin co-expression: (1) some combinations of connexins may form heteromeric connexons with novel proeprties; (2) some connexins may form heteromeric channels that do not have unique properties, and (3) some connexins may be incompatible for heteromeric mixing.


The Journal of Neuroscience | 2010

The Association of Dynamin with Synaptophysin Regulates Quantal Size and Duration of Exocytotic Events in Chromaffin Cells

Arlek M. González-Jamett; Ximena Báez-Matus; Montserrat A. Hevia; María José Guerra; María José Olivares; Agustín D. Martínez; Alan Neely; Ana M. Cárdenas

Although synaptophysin is one of the most abundant integral proteins of synaptic vesicle membranes, its contribution to neurotransmitter release remains unclear. One possibility is that through its association with dynamin it controls the fine tuning of transmitter release. To test this hypothesis, we took advantage of amperometric measurements of quantal catecholamine release from chromaffin cells. First, we showed that synaptophysin and dynamin interact in chromaffin granule-rich fractions and that this interaction relies on the C terminal of synaptophysin. Experimental maneuvers that are predicted to disrupt the association between these two proteins, such as injection of antibodies against dynamin or synaptophysin, or peptides homologous to the C terminal of synaptophysin, increased the quantal size and duration of amperometric spikes. In contrast, the amperometric current that precedes the spike remained unchanged, indicating that synaptophysin/dynamin association does not regulate the initial fusion pore, but it appears to target a later step of exocytosis to control the amount of catecholamines released during a single vesicle fusion event.


Journal of Investigative Dermatology | 2015

Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43.

Isaac E. García; Jaime Maripillán; Oscar Jara; Ricardo Ceriani; Angelina Palacios-Muñoz; Pablo Olivero; Tomas Perez-Acle; Carlos Gonzalez; Juan C. Sáez; Jorge E. Contreras; Agustín D. Martínez

Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like Keratitis Ichthyosis Deafness syndrome (KID). Because in the human skin Cx26 is co-expressed with other connexins, like Cx43 and Cx30, and since KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channels functions remain unknown. In this study we demonstrate that syndromic mutations at the N-terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) show exacerbated hemichannel activity, but nonfunctional gap junction channels; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.


PLOS ONE | 2013

Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells.

Arlek M. González-Jamett; Fanny Momboisse; María José Guerra; Stéphane Ory; Ximena Báez-Matus; Natalia Barraza; Valérie Calco; Sébastien Houy; Alan Neely; Agustín D. Martínez; Stéphane Gasman; Ana M. Cárdenas

Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin’s ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands.


Frontiers in Cellular Neuroscience | 2015

Diseases associated with leaky hemichannels.

Mauricio A. Retamal; Edison P. Reyes; Isaac E. García; Bernardo I. Pinto; Agustín D. Martínez; Carlos Gonzalez

Hemichannels (HCs) and gap junction channels (GJCs) formed by protein subunits called connexins (Cxs) are major pathways for intercellular communication. While HCs connect the intracellular compartment with the extracellular milieu, GJCs allow the interchange of molecules between cytoplasm of two contacting cells. Under physiological conditions, HCs are mostly closed, but they can open under certain stimuli allowing the release of autocrine and paracrine molecules. Moreover, some pathological conditions, like ischemia or other inflammation conditions, significantly increase HCs activity. In addition, some mutations in Cx genes associated with human diseases, such as deafness or cataracts, lead to the formation of more active HCs or “leaky HCs.” In this article we will revise cellular and molecular mechanisms underlying the appearance of leaky HCs, and the consequences of their expression in different cellular systems and animal models, in seeking a common pattern or pathological mechanism of disease.


Molecular BioSystems | 2012

Modulation of gap junction channels and hemichannels by growth factors

Kurt A. Schalper; Manuel A. Riquelme; María C. Brañes; Agustín D. Martínez; José L. Vega; Viviana M. Berthoud; Juan C. Sáez

Gap junction hemichannels and cell-cell channels have roles in coordinating numerous cellular processes, due to their permeability to extra and intracellular signaling molecules. Another mechanism of cellular coordination is provided by a vast array of growth factors that interact with relatively selective cell membrane receptors. These receptors can affect cellular transduction pathways, including alteration of intracellular concentration of free Ca(2+) and free radicals and activation of protein kinases or phosphatases. Connexin and pannexin based channels constitute recently described targets of growth factor signal transduction pathways, but little is known regarding the effects of growth factor signaling on pannexin based channels. The effects of growth factors on these two channel types seem to depend on the cell type, cell stage and connexin and pannexin isoform expressed. The functional state of hemichannels and gap junction channels are affected in opposite directions by FGF-1 via protein kinase-dependent mechanisms. These changes are largely explained by channels insertion in or withdrawal from the cell membrane, but changes in open probability might also occur due to changes in phosphorylation and redox state of channel subunits. The functional consequence of variation in cell-cell communication via these membrane channels is implicated in disease as well as normal cellular responses.

Collaboration


Dive into the Agustín D. Martínez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan C. Sáez

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge