Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agustín García Barneto is active.

Publication


Featured researches published by Agustín García Barneto.


Bioresource Technology | 2010

Simulation of the thermogravimetry analysis of three non-wood pulps

Agustín García Barneto; José Ariza Carmona; José E. Martín Alfonso; Rafael Serrano

In a study of three non-wood pulps (rice straw, EFB, and Hesperaloe), the standard pyrolysis model for biomass based on hemicellulose, cellulose, and lignin pseudo-components, was modified to include char volatilization. As a result, abnormally high values for lignin content have been avoided. On the other hand, the consideration of autocatalysis (Prout-Tompkins equation) for TGA data simulation under inert and oxidative atmospheres, allows obtaining a stable set of kinetic parameters that describe volatilization and char oxidation for different heating rates, including char ignition. These simulations allow us to investigate certain effects like oxygen influence on cellulose-char formation (including reduction in activation energy) and to calculate the composition of samples.


Bioresource Technology | 2012

Investigating the structure-effect relationships of various natural phenols used as laccase mediators in the biobleaching of kenaf and sisal pulps.

Agustín García Barneto; Elisabetta Aracri; Glòria Andreu; Teresa Vidal

Nine phenol derivatives, p-coumaric acid (PC), vanillin (V), acetovanillone (AV), acetosyringone (AS), syringaldehyde (SA), coniferaldehyde (CLD), ferulic acid (FRC), sinapic acid (SNC), and sinapyl aldehyde (SLD) were assayed as laccase redox mediators in the biobleaching of kenaf and sisal pulps. As a general behaviour, the phenolic mediators increased the kappa number (KN) and reduced the brightness of pulps. In particular, these changes were found to depend in a linear manner on the energy of the highest occupied molecular orbital (E(HOMO)) of the mediators. The phenolic mediator with the lowest E(HOMO) (PC) led to the highest increase of KN and the lowest reduction of brightness. On the contrary, syringyl derivatives (i.e. SA) with high E(HOMO) values caused small KN increases and significant losses of brightness. This behaviour was explained on the basis of a competition between grafting and polymerisation processes. The former basically affects KN, whereas the latter affects pulp brightness.


Bioresource Technology | 2009

Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.

Agustín García Barneto; José Ariza Carmona; José E. Martín Alfonso; Luis Jiménez Alcaide

Non-isothermal thermogravimetric analysis (TGA) data of biomasses and pulps originating from non-wood and alternatives materials (i.e., Tagasaste or rice straw) have been fitted with refined models, which include autocatalytic kinetics. Data sets were obtained for different experimental conditions, such as variations of heating rate and atmosphere, i.e., inert (pyrolysis) versus oxidative atmosphere (combustion). Besides the access to classical kinetic parameters (pre-exponential factor, activation energy, and reaction order), the improved data analysis enabled the determination of the chemical composition of the samples (cellulose, hemicellulose, extractives, lignin). The latter compared very well with those obtained by conventional methods (chemical analysis, HPLC). Given the reduced environmental impact and rapidness of the method, potential applications for research related to new biomasses and industrial processes can be foreseen. The herein implemented method is based on the assumption that samples contain pseudo-components, which independently degrade, and that combustion is the combination of an initial volatilization process (similar to pyrolysis) and a subsequent char oxidation process. Further, it was found that for a reliable modeling of the volatilization stage, extractives should be considered as well, together with the classical pseudo-components: hemicellulose, cellulose and lignin. The char oxidation stage has been simulated as a sum of the oxidation of three char types, one for each main pseudo-component. Importantly, fitting of TGA curves under consideration of autocatalytic kinetics allows the determination of a consistent set of kinetic parameters at different heating rates and leads to significant suppression of the compensation effect. While autocatalysis (characterized by the nucleation order) is not very significant for pyrolysis of biomasses, it can reach high levels for combustion, especially when high heating rates are used. In cellulosic char oxidation a nucleation order larger than one was fitted. The autocatalysis level of the char oxidation can rapidly increase with small modifications of the heating rate (i.e. to pass from 5 to 10 degrees C/min). In this case, the classically applied nth-order kinetic is particularly insufficient to fit experimental data with the same set of the kinetic parameters.


Bioresource Technology | 2011

Use of thermogravimetric analysis to monitor the effects of natural laccase mediators on flax pulp

Carlos Vila; Agustín García Barneto; Amanda Fillat; Teresa Vidal; J. Ariza

The effects of 1-hydroxybenzotriazole (HBT) and the natural laccase mediators gallic acid, caffeic acid and p-hydroxybenzoic acid, on the enzymatic bleaching of flax pulp were compared. The treatment was performed under atmospheric air and oxygen pressure, and, for the first time, monitored by thermogravimetric analysis (TGA) for comparison with chemical analysis, FTIR and X-ray diffraction (XRD) spectroscopies. Thermogravimetric data were simulated by applying a nucleation kinetic equation to a combustion model based on four pseudo-components (hemicellulose, amorphous and crystalline cellulose, and lignin). The results thus obtained show that the effects of the natural mediators are similar to those of HBT and lead to increased order in cellulose microfibril surfaces. An increase in pulp crystallinity was additionally exposed by the XRD and FTIR techniques, and a reduction in microfibril equatorial size by the XRD patterns. Simulated DTG curves were used to determine the kinetic parameters for thermal degradation.


Journal of Physical Chemistry A | 2010

Effect of the previous composting on volatiles production during biomass pyrolysis.

Agustín García Barneto; José Ariza Carmona; M. Jesús Diaz Blanco

Composting is a biological process of decomposition of organic materials in an aerobic environment, which modifies the chemical composition and the thermal behavior of biomass. During composting, fungi and bacteria promote the decomposition of hemicellulosic and cellulosic fractions, increasing the lignin proportion. Its product, compost, is usually used as an amendment to soil; however, its physicochemical characteristics turn it into an interesting feedstock in pyrolysis or gasification facilities. The changes that composting produces on biomass pyrolysis can be explained using an autocatalytic kinetic model (Prout-Tompkins). Thus, by means of a similar set of kinetic parameters for both the biomass and compost, it is possible to simulate the thermogravimetric analysis data (TG and DTG curves) of the materials as a sum of thermal degradations of its main pseudocomponents, hemicellulose, cellulose, lignin, and extractives. TG analysis coupled to mass spectrometry (MS) allows monitoring of the gas production during pyrolysis. Water and carbon oxide MS profiles can be simulated by an optimized linear combination of previously calculated DTG curves of pseudocomponents; however, in order to simulate the hydrogen MS signal, it is necessary to consider the char obtained in the course of the volatilization process. During pyrolysis, hydrogen production has two origins, volatilization of biomass pseudocomponents and charring. The last mechanism explains approximately 75% of the hydrogen obtained from compost. The pseudocomponent that produces more hydrogen by weight unit is lignin, showing a specific hydrogen production much higher than carbohydrates (3:1:8 for hemicellulose/cellulose/lignin). This fact, together with the greater lignin content in compost, explains the positive effect of composting on hydrogen production.


Carbohydrate Polymers | 2015

Studying the effects of laccase treatment in a softwood dissolving pulp: cellulose reactivity and crystallinity.

Elisabet Quintana; Cristina Valls; Agustín García Barneto; Teresa Vidal; J. Ariza; M. Blanca Roncero

An enzymatic biobleaching sequence (LVAQPO) using a laccase from Trametes villosa in combination with violuric acid (VA) and then followed by a pressurized hydrogen peroxide treatment (PO) was developed and found to give high bleaching properties and meet dissolving pulp requirements: high brightness, low content of hemicellulose, satisfactory pulp reactivity, no significant cellulose degradation manifested by α-cellulose and HPLC, and brightness stability against moist heat ageing. The incorporation of a laccase-mediator system (LMS) to bleach sulphite pulps can be a good alternative to traditional bleaching processes since thermogravimetric analysis (TGA) showed that the laccase treatment prevented the adverse effect of hydrogen peroxide on fibre surface as observed during a conventional hydrogen peroxide bleaching treatment (PO). Although VA exhibited the best results in terms of bleaching properties, the performance of natural mediators, such as p-coumaric acid and syringaldehyde, was discussed in relation to changes in cellulose surface detected by TGA.


Bioresource Technology | 2011

Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics

D. Gómez-Martínez; Agustín García Barneto; Inmaculada Martínez; P. Partal

Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten-glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.


Biotechnology Progress | 2016

Characterization of a bacterioruberin-producing Haloarchaea isolated from the marshlands of the Odiel river in the southwest of Spain.

Marta de la Vega; Ana Sayago; J. Ariza; Agustín García Barneto; Rosa León

In this work, we describe the isolation, identification, pigment characterization, and optimization of the culture conditions for a haloarchaea strain isolated from salt evaporation ponds in the Odiel river, at Southwest of Spain. The haloarchaea belongs to the genus Halorobrum, as deduced from the analysis of its 16S rRNA encoding gene and has been designated as Halorubrum sp. SH1. The growth conditions for the new strain were optimized studying temperature, NaCl concentration, agitation rate and light intensity. The C50‐carotenoids, bacterioruberin, and its derivatives bisanhydrobacterioruberin and trisanhydrobacterioruberin, were found to be the predominant pigments produced by this strain of Halorubrum, as determined using HPLC‐DAD and UHPLC‐ESI‐MS/MS techniques. This extremely halophilic archaeon could be a good candidate for the production of bacterioruberins of high added‐value due to their coloring, antioxidant, and possible anticancer properties.


Bioresource Technology | 2011

Thermogravimetry study of xylanase- and laccase/mediator-treated eucalyptus pulp fibres

Agustín García Barneto; Cristina Valls; J. Ariza; M. Blanca Roncero

Thermogravimetric analyses (TGA) was applied to study the effects of enzymatic bleaching of eucalyptus pulp with xylanase and a laccase-mediator system. The thermal degradation profile of the pulps was sensitive to the enzymatic treatments. Xylanase treatment produced an ordered and clean microfibril, whereas laccase oxidized surface cellulose chains and increased the amorphous (paracrystalline) cellulose content. In this case, pulp viscosity decreased from 972 to 859 mL/g and apparent pulp crystallinity calculated from TGA data decreased almost 50%. Alkaline extraction was necessary to recover pulp crystallinity and to remove oxidized lignin in the laccase-treated samples. TGA data allowed differentiating and quantifying crystalline and amorphous cellulose. This thermogravimetric approach is a simple method in order to monitor superficial changes in cellulosic microfibrils.


Bioresource Technology | 2013

A new biobleaching sequence for kenaf pulp: Influence of the chemical nature of the mediator and thermogravimetric analysis of the pulp

Glòria Andreu; Agustín García Barneto; Teresa Vidal

This paper evaluates five phenolic compounds as mediators for kenaf pulp biobleaching by laccase. The results have been compared with the treatment using a non-phenolic mediator, 1-hydroxybenzotriole and laccase alone. The influence of the nature of the chemical mediators used on various pulp properties is discussed. In addition to oxidizing lignin, the phenolic radicals formed in the process take part in condensation and grafting reactions in enzymatic stage. After biobleaching sequence (LP), syringaldehyde was shown to be the best phenolic mediator, allowing a delignification of 43% and 72% ISO brightness. These results were similar to the use of laccase alone due to the role as mediators of syringyl units resulting from oxidative lignin degradation. As a novelty, the study was supplemented with thermogravimetric analysis, with emphasis on the crystallinity degree of the cellulose surface and the aim of elucidating the action mechanisms of laccase-mediator systems on fiber.

Collaboration


Dive into the Agustín García Barneto's collaboration.

Top Co-Authors

Avatar

J. Ariza

University of Huelva

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Vidal

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Valls

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Blanca Roncero

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Elisabet Quintana

Polytechnic University of Catalonia

View shared research outputs
Researchain Logo
Decentralizing Knowledge