Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agustín L. Arce is active.

Publication


Featured researches published by Agustín L. Arce.


BMC Plant Biology | 2011

Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity

Agustín L. Arce; Jesica Raineri; Matías Capella; Julieta Virginia Cabello; Raquel L. Chan

BackgroundPlant HD-Zip transcription factors are modular proteins in which a homeodomain is associated to a leucine zipper. Of the four subfamilies in which they are divided, the tested members from subfamily I bind in vitro the same pseudopalindromic sequence CAAT(A/T)ATTG and among them, several exhibit similar expression patterns. However, most experiments in which HD-Zip I proteins were over or ectopically expressed under the control of the constitutive promoter 35S CaMV resulted in transgenic plants with clearly different phenotypes. Aiming to elucidate the structural mechanisms underlying such observation and taking advantage of the increasing information in databases of sequences from diverse plant species, an in silico analysis was performed. In addition, some of the results were also experimentally supported.ResultsA phylogenetic tree of 178 HD-Zip I proteins together with the sequence conservation presented outside the HD-Zip domains allowed the distinction of six groups of proteins. A motif-discovery approach enabled the recognition of an activation domain in the carboxy-terminal regions (CTRs) and some putative regulatory mechanisms acting in the amino-terminal regions (NTRs) and CTRs involving sumoylation and phosphorylation. A yeast one-hybrid experiment demonstrated that the activation activity of ATHB1, a member of one of the groups, is located in its CTR. Chimerical constructs were performed combining the HD-Zip domain of one member with the CTR of another and transgenic plants were obtained with these constructs. The phenotype of the chimerical transgenic plants was similar to the observed in transgenic plants bearing the CTR of the donor protein, revealing the importance of this module inside the whole protein.ConclusionsThe bioinformatical results and the experiments conducted in yeast and transgenic plants strongly suggest that the previously poorly analyzed NTRs and CTRs of HD-Zip I proteins play an important role in their function, hence potentially constituting a major source of functional diversity among members of this subfamily.


Plant Journal | 2012

The homologous HD‐Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis‐related and glucanase proteins

Julieta Virginia Cabello; Agustín L. Arce; Raquel L. Chan

Plants deal with cold temperatures via different signal transduction pathways. The HD-Zip I homologous transcription factors HaHB1 from sunflower and AtHB13 from Arabidopsis were identified as playing a key role in such cold response. The expression patterns of both genes were analyzed indicating an up-regulation by low temperatures. When these genes were constitutively expressed in Arabidopsis, the transgenic plants showed similar phenotypes including cell membrane stabilization under freezing treatments and cold tolerance. An exploratory transcriptomic analysis of HaHB1 transgenic plants indicated that several transcripts encoding glucanases and chitinases were induced. Moreover, under freezing conditions some proteins accumulated in HaHB1 plants apoplasts and these extracts exerted antifreeze activity in vitro. Three genes encoding two glucanases and a chitinase were overexpressed in Arabidopsis and these plants were able to tolerate freezing temperatures. All the obtained transgenic plants exhibited cell membrane stabilization after a short freezing treatment. Finally, HaHB1 and AtHB13 were used to transiently transform sunflower and soybean leading to the up-regulation of HaHB1/AtHB13-target homologues thus indicating the conservation of cold response pathways. We propose that HaHB1 and AtHB13 are involved in plant cold tolerance via the induction of proteins able to stabilize cell membranes and inhibit ice growth.


New Phytologist | 2015

Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation.

Matías Capella; Pamela A. Ribone; Agustín L. Arce; Raquel L. Chan

Arabidopsis thaliana HomeoBox 1 (AtHB1) is a homeodomain-leucine zipper transcription factor described as a transcriptional activator with unknown function. Its role in A. thaliana development was investigated. AtHB1 expression was analyzed in transgenic plants bearing its promoter region fused to reporter genes. Knock-down mutant and overexpressor plant phenotypes were analyzed in different photoperiod regimes. AtHB1 was mainly expressed in hypocotyls and roots and up-regulated in seedlings grown under a short-day photoperiod. AtHB1 knock-down mutants and overexpressors showed shorter and longer hypocotyls, respectively, than wild type (WT). AtHB1 transcript levels were lower in PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) mutants than in controls, suggesting that AtHB1 is regulated by PIF1 in hypocotyls. β-glucuronidase (GUS) activity in Nicotiana benthamiana leaves cotransformed with PromAtHB1::GUS and 35S::PIF1 indicated that PIF1 induces AtHB1 expression. Hypocotyl lenght was measured in seedlings of athb1, pif1, or double athb1/pif1 mutants and PIF1 or AtHB1 overexpressors in WT, athb1 or pif1 backgrounds, both in short- or long-day. These analyses allowed us to determine that AtHB1 is a factor acting downstream of PIF1. Finally, a transcriptome analysis of athb1 mutant hypocotyls revealed that AtHB1 regulates genes involved in cell wall composition and elongation. The results suggest that AtHB1 acts downstream of PIF1 to promote hypocotyl elongation, especially in response to short-day photoperiods.


Plant Journal | 2015

TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis.

Leandro Exequiel Lucero; Nora G. Uberti-Manassero; Agustín L. Arce; Francisco Colombatti; Sergio G. Alemano; Daniel H. Gonzalez

We studied the role of Arabidopsis thaliana TCP15, a member of the TEOSINTE BRANCHED1-CYCLOIDEA-PCF (TCP) transcription factor family, in gynoecium development. Plants that express TCP15 from the 35S CaMV promoter (35S:TCP15) develop flowers with defects in carpel fusion and a reduced number of stigmatic papillae. In contrast, the expression of TCP15 fused to a repressor domain from its own promoter causes the development of outgrowths topped with stigmatic papillae from the replum. 35S:TCP15 plants show lower levels of the auxin indoleacetic acid and reduced expression of the auxin reporter DR5 and the auxin biosynthesis genes YUCCA1 and YUCCA4, suggesting that TCP15 is a repressor of auxin biosynthesis. Treatment of plants with cytokinin enhances the developmental effects of expressing TCP15 or its repressor form. In addition, treatment of a knock-out double mutant in TCP15 and the related gene TCP14 with cytokinin causes replum enlargement, increased development of outgrowths, and the induction of the auxin biosynthesis genes YUCCA1 and YUCCA4. A comparison of the phenotypes observed after cytokinin treatment of plants with altered expression levels of TCP15 and auxin biosynthesis genes suggests that TCP15 modulates gynoecium development by influencing auxin homeostasis. We propose that the correct development of the different tissues of the gynoecium requires a balance between auxin levels and cytokinin responses, and that TCP15 participates in a feedback loop that helps to adjust this balance.


Plant Cell Reports | 2014

Plant homeodomain-leucine zipper I transcription factors exhibit different functional AHA motifs that selectively interact with TBP or/and TFIIB

Matías Capella; Delfina Adela Ré; Agustín L. Arce; Raquel L. Chan

Key messageDifferent members of the HD-Zip I family of transcription factors exhibit differential AHA-like activation motifs, able to interact with proteins of the basal transcriptional machinery.AbstractHomeodomain-leucine zipper proteins are transcription factors unique to plants, classified in four subfamilies. Subfamily I members have been mainly associated to abiotic stress responses. Several ones have been characterized using knockout or overexpressors plants, indicating that they take part in different signal transduction pathways even when their expression patterns are similar and they bind the same DNA sequence. A bioinformatic analysis has revealed the existence of conserved motifs outside the HD-Zip domain, including transactivation AHA motifs. Here, we demonstrate that these putative activation motifs are functional. Four members of the Arabidopsis family were chosen: AtHB1, AtHB7, AtHB12 and AtHB13. All of them exhibited activation activity in yeast and in plants but with different degrees. The protein segment necessary for such activation was different for these four transcription factors as well as the role of the tryptophans they present. When interaction with components of the basal transcription machinery was tested, AtHB1 was able to interact with TBP, AtHB12 interacted with TFIIB, AtHB7 interacted with both, TBP and TFIIB while AtHB13 showed weak interactions with any of them, in yeast two-hybrid as well as in pull-down assays. Transient transformation of Arabidopsis seedlings confirmed the activation capacity and specificity of these transcription factors and showed some differences with the results obtained in yeast. In conclusion, the differential activation functionality of these transcription factors adds an important level of functional divergence of these proteins, and together with their expression patterns, these differences could explain, at least in part, their functional divergence.


Molecular Biology and Evolution | 2016

The footprint of polygenic adaptation on stress-responsive cis-regulatory divergence in the Arabidopsis genus

Fei He; Agustín L. Arce; Gregor Schmitz; Maarten Koornneef; Polina Novikova; Andreas Beyer; Juliette de Meaux

Adaptation of a complex trait often requires the accumulation of many modifications to finely tune its underpinning molecular components to novel environmental requirements. The investigation of cis-acting regulatory modifications can be used to pinpoint molecular systems partaking in such complex adaptations. Here, we identify cis-acting modifications with the help of an interspecific crossing scheme designed to distinguish modifications derived in each of the two sister species, Arabidopsis halleri and A. lyrata Allele-specific expression levels were assessed in three environmental conditions chosen to reflect interspecific ecological differences: cold exposure, dehydration, and standard conditions. The functions described by Gene Ontology categories enriched in cis-acting mutations are markedly different in A. halleri and A. lyrata, suggesting that polygenic adaptation reshaped distinct polygenic molecular functions in the two species. In the A. halleri lineage, an excess of cis-acting changes affecting metal transport and homeostasis was observed, confirming that the well-known heavy metal tolerance of this species is the result of polygenic selection. In A. lyrata, we find a marked excess of cis-acting changes among genes showing a transcriptional response to cold stress in the outgroup species A. thaliana The adaptive relevance of these changes will have to be validated. We finally observed that polygenic molecular functions enriched in derived cis-acting changes are more constrained at the amino acid level. Using the distribution of cis-acting variation to tackle the polygenic basis of adaptation thus reveals the contribution of mutations of small effect to Darwinian adaptation.


Plant Cell and Environment | 2016

The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis

Lucila García; Elina Welchen; Uta Gey; Agustín L. Arce; Iris Steinebrunner; Daniel H. Gonzalez

COX17 is a soluble protein from the mitochondrial intermembrane space that participates in the transfer of copper for cytochrome c oxidase (COX) assembly in eukaryotic organisms. In this work, we studied the function of both Arabidopsis thaliana AtCOX17 genes using plants with altered expression levels of these genes. Silencing of AtCOX17-1 in a cox17-2 knockout background generates plants with smaller rosettes and decreased expression of genes involved in the response of plants to different stress conditions, including several genes that are induced by mitochondrial dysfunctions. Silencing of either of the AtCOX17 genes does not affect plant development or COX activity but causes a decrease in the response of genes to salt stress. In addition, these plants contain higher reactive oxygen and lipid peroxidation levels after irrigation with high NaCl concentrations and are less sensitive to abscisic acid. In agreement with a role of AtCOX17 in stress and abscisic acid responses, both AtCOX17 genes are induced by several stress conditions, abscisic acid and mutation of the transcription factor ABI4. The results indicate that AtCOX17 is required for optimal expression of a group of stress-responsive genes, probably as a component of signalling pathways that link stress conditions to gene expression responses.


Annals of Botany | 2017

A role for LAX2 in regulating xylem development and lateral-vein symmetry in the leaf

Guillermo S Moreno-Piovano; Javier Moreno; Julieta Virginia Cabello; Agustín L. Arce; María E. Otegui; Raquel L. Chan

Background and Aims The symmetry of venation patterning in leaves is highly conserved within a plant species. Auxins are involved in this process and also in xylem vasculature development. Studying transgenic Arabidopsis plants ectopically expressing the sunflower transcription factor HaHB4, it was observed that there was a significant lateral-vein asymmetry in leaves and in xylem formation compared to wild type plants. To unravel the molecular mechanisms behind this phenotype, genes differentially expressed in these plants and related to auxin influx were investigated. Methods Candidate genes responsible for the observed phenotypes were selected using a co-expression analysis. Single and multiple mutants in auxin influx carriers were characterized by morphological, physiological and molecular techniques. The analysis was further complemented by restoring the wild type (WT) phenotype by mutant complementation studies and using transgenic soybean plants ectopically expressing HaHB4 . Key Results LAX2 , down-regulated in HaHB4 transgenic plants, was bioinformatically chosen as a candidate gene. The quadruple mutant aux1 lax1 lax2 lax3 and the single mutants, except lax1, presented an enhanced asymmetry in venation patterning. Additionally, the xylem vasculature of the lax2 mutant and the HaHB4 -expressing plants differed from the WT vasculature, including increased xylem length and number of xylem cell rows. Complementation of the lax2 mutant with the LAX2 gene restored both lateral-vein symmetry and xylem/stem area ratio in the stem, showing that auxin homeostasis is required to achieve normal vascular development. Interestingly, soybean plants ectopically expressing HaHB4 also showed an increased asymmetry in the venation patterning, accompanied by the repression of several GmLAX genes. Conclusions Auxin influx carriers have a significant role in leaf venation pattering in leaves and, in particular, LAX2 is required for normal xylem development, probablt controlling auxin homeostasis.


Plant Physiology | 2017

A uORF Represses the Transcription Factor AtHB1 in Aerial Tissues to Avoid a Deleterious Phenotype

Pamela A. Ribone; Matías Capella; Agustín L. Arce; Raquel L. Chan

An upstream ORF encoded in an homeodomain-leucine zipper I gene and regulated by a chloroplast signal causes ribosome stalling in aerial tissues that had been exposed to light. AtHB1 is an Arabidopsis (Arabidopsis thaliana) homeodomain-leucine zipper transcription factor that participates in hypocotyl elongation under short-day conditions. Here, we show that its expression is posttranscriptionally regulated by an upstream open reading frame (uORF) located in its 5′ untranslated region. This uORF encodes a highly conserved peptide (CPuORF) that is present in varied monocot and dicot species. The Arabidopsis uORF and its maize (Zea mays) homolog repressed the translation of the main open reading frame in cis, independent of the sequence of the latter. Published ribosome footprinting results and the analysis of a frame-shifted uORF, in which the repression capability was lost, indicated that the uORF causes ribosome stalling. The regulation exerted by the CPuORF was tissue specific and did not act in the absence of light. Moreover, a photosynthetic signal is needed for the CPuORF action, since plants with uncoupled chloroplasts did not show uORF-dependent repression. Plants transformed with the native AtHB1 promoter driving AtHB1 expression did not show differential phenotypes, whereas those transformed with a construct in which the uORF was mutated exhibited serrated leaves, compact rosettes, and, most significantly, short nondehiscent anthers and siliques containing fewer or no seeds. Thus, we propose that the uncontrolled expression of AtHB1 is deleterious for the plant and, hence, finely repressed by a translational mechanism.


Plant Transcription Factors#R##N#Evolutionary, Structural and Functional Aspects | 2016

Homeodomain–Leucine Zipper Transcription Factors: Structural Features of These Proteins, Unique to Plants

Matías Capella; Pamela A. Ribone; Agustín L. Arce; Raquel L. Chan

The homeodomain is encoded by a 180 bp consensus DNA sequence named the homeobox, and it is present in transcription factors (TFs) involved in developmental processes in eukaryotic kingdoms. One particular family, the HD-Zip, is unique to plants. These proteins are characterized by the singular combination of a homeodomain associated to a leucine zipper, which acts as a dimerization domain. Dimerization is a necessary requisite for DNA binding. HD-Zip proteins have been classified into four subfamilies, according to the conservation of the HD-Zip domain, gene structures, additional conserved motifs, and functions. These TFs have been studied by several research groups worldwide contributing to the current knowledge about the structures and functions on these complex regulatory proteins. Here, we summarize the available data on the structural features of homeobox genes and their encoded proteins, attempting to unravel their action mechanisms.

Collaboration


Dive into the Agustín L. Arce's collaboration.

Top Co-Authors

Avatar

Raquel L. Chan

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Matías Capella

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pamela A. Ribone

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Julieta Virginia Cabello

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Gonzalez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Delfina Adela Ré

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Fei He

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel J. Giudicatti

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge