Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agustina Maria Lascano is active.

Publication


Featured researches published by Agustina Maria Lascano.


Brain | 2011

Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients

Verena Brodbeck; Laurent Spinelli; Agustina Maria Lascano; Michael Wissmeier; Maria Isabel Vargas; Serge Vulliemoz; Claudio Pollo; Karl Lothard Schaller; Christoph M. Michel; Margitta Seeck

Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128–256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluation.


Epilepsia | 2010

Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI.

Verena Brodbeck; Laurent Spinelli; Agustina Maria Lascano; Claudio Pollo; Karl Lothard Schaller; Maria I. Vargas; Michael Wissmeyer; Christoph M. Michel; Margitta Seeck

Purpose:  Patients with magnetic resonance (MR)–negative focal epilepsy (MRN‐E) have less favorable surgical outcomes (between 40% and 70%) compared to those in whom an MRI lesion guides the site of surgical intervention (60–90%). Patients with extratemporal MRN‐E have the worst outcome (around 50% chance of seizure freedom). We studied whether electroencephalography (EEG) source imaging (ESI) of interictal epileptic activity can contribute to the identification of the epileptic focus in patients with normal MRI.


NeuroImage | 2012

The behavioral significance of coherent resting-state oscillations after stroke

Sviatlana Dubovik; Jean-Michel Pignat; Radek Ptak; Tatiana Aboulafia; Lara Allet; Nicole Gillabert; Cécile Magnin; Fabien Albert; Isabelle Momjian-Mayor; Louis Nahum; Agustina Maria Lascano; Christoph M. Michel; Armin Schnider; Adrian G. Guggisberg

Stroke lesions induce not only loss of local neural function, but disruptions in spatially distributed areas. However, it is unknown whether they affect the synchrony of electrical oscillations in neural networks and if changes in network coherence are associated with neurological deficits. This study assessed these questions in a population of patients with subacute, unilateral, ischemic stroke. Spontaneous cortical oscillations were reconstructed from high-resolution electroencephalograms (EEG) with adaptive spatial filters. Maps of functional connectivity (FC) between brain areas were created and correlated with patient performance in motor and cognitive scores. In comparison to age matched healthy controls, stroke patients showed a selective disruption of FC in the alpha frequency range. The spatial distribution of alpha band FC reflected the pattern of motor and cognitive deficits of the individual patient: network nodes that participate normally in the affected functions showed local decreases in FC with the rest of the brain. Interregional FC in the alpha band, but not in delta, theta, or beta frequencies, was highly correlated with motor and cognitive performance. In contrast, FC between contralesional areas and the rest of the brain was negatively associated with patient performance. Alpha oscillation synchrony at rest is a unique and specific marker of network function and linearly associated with behavioral performance. Maps of alpha synchrony computed from a single resting-state EEG recording provide a robust and convenient window into the functionality and organization of cortical networks with numerous potential applications.


NeuroImage | 2008

A mouse model for studying large-scale neuronal networks using EEG mapping techniques

Pierre Mégevand; Charles Quairiaux; Agustina Maria Lascano; Jozsef Zoltan Kiss; Christoph M. Michel

Human functional imaging studies are increasingly focusing on the identification of large-scale neuronal networks, their temporal properties, their development, and their plasticity and recovery after brain lesions. A method targeting large-scale networks in rodents would open the possibility to investigate their neuronal and molecular basis in detail. We here present a method to study such networks in mice with minimal invasiveness, based on the simultaneous recording of epicranial EEG from 32 electrodes regularly distributed over the head surface. Spatiotemporal analysis of the electrical potential maps similar to human EEG imaging studies allows quantifying the dynamics of the global neuronal activation with sub-millisecond resolution. We tested the feasibility, stability and reproducibility of the method by recording the electrical activity evoked by mechanical stimulation of the mystacial vibrissae. We found a series of potential maps with different spatial configurations that suggested the activation of a large-scale network with generators in several somatosensory and motor areas of both hemispheres. The spatiotemporal activation pattern was stable both across mice and in the same mouse across time. We also performed 16-channel intracortical recordings of the local field potential across cortical layers in different brain areas and found tight spatiotemporal concordance with the generators estimated from the epicranial maps. Epicranial EEG mapping thus allows assessing sensory processing by large-scale neuronal networks in living mice with minimal invasiveness, complementing existing approaches to study the neurophysiological mechanisms of interaction within the network in detail and to characterize their developmental, experience-dependent and lesion-induced plasticity in normal and transgenic animals.


Neuroscience | 2010

Spatio–temporal dynamics of olfactory processing in the human brain: an event-related source imaging study

Agustina Maria Lascano; Thomas Hummel; Jean-Sylvain Lacroix; Basile Nicolas Landis; Christoph M. Michel

Although brain structures involved in central nervous olfactory processing in humans have been well identified with functional neuroimaging, little is known about the temporal sequence of their activation. We recorded olfactory event-related potentials (ERP) to H(2)S stimuli presented to the left and right nostril in 12 healthy subjects. Topographic and source analysis identified four distinct processing steps between 200 and 1000 ms. Activation started ipsilateral to the stimulated nostril in the mesial and lateral temporal cortex (amygdala, parahippocampal gyrus, superior temporal gyrus, insula). Subsequently, the corresponding structures on the contralateral side became involved, followed by frontal structures at the end of the activation period. Thus, based on EEG-related data, current results suggest that olfactory information in humans is processed first ipsilaterally to the stimulated nostril and then activates the major relays in olfactory information processing in both hemispheres. Most importantly, the currently described techniques allow the investigation of the spatial processing of olfactory information at a high temporal resolution.


Clinical Neurophysiology | 2016

Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates.

Agustina Maria Lascano; Thomas V. Perneger; Serge Vulliemoz; Laurent Spinelli; Valentina Garibotto; Christian Korff; Maria I. Vargas; Christoph M. Michel; Margitta Seeck

OBJECTIVE Preoperative workup aims at localizing the epileptogenic focus to achieve postoperative seizure-freedom. We studied the predictive value of non-invasive techniques, i.e. structural magnetic resonance imaging [MRI], high-density electric source imaging [HD-ESI] and metabolic imaging (positron emission tomography [PET]; single-photon emission computed tomography [SPECT]), in surgically treated patients. METHODS A prospective study of 190 epileptic operated patients, with >12 months follow-up and analyzed with state-of-the-art algorithms. 58 patients underwent all techniques. We computed sensitivity, specificity, predictive value and diagnostic odds ratio (OR) in relation to postoperative outcome. RESULTS Of 190 patients, 148 (77.9%) were seizure-free at follow-up. Resection of the epileptogenic focus was associated with favorable postsurgical outcome (p<0.05). Among 58 patients who underwent all tests, only MRI and HD-ESI were favorable outcome predictors (MRI: OR 10.9, p=0.004; HD-ESI: OR 13.1, p=0.004). Patients with concordant structural MRI and HD-ESI results had 92.3% (24/26) probability of favorable outcome. When both results were negative, probability was 0% (0/5); and when they disagreed, it was 63.0% (17/27). CONCLUSIONS Combination of MRI and HD-ESI offered the highest predictive value for postoperative seizure-freedom. SIGNIFICANCE This finding highlights the added value of HD-ESI in the presurgical workup, in particular in combination with an informative MRI.


Clinical Neurophysiology | 2014

Comparison of high gamma electrocorticography and fMRI with electrocortical stimulation for localization of somatosensory and language cortex

Melanie Genetti; R. Tyrand; Frédéric Grouiller; Agustina Maria Lascano; Serge Vulliemoz; Laurent Spinelli; Margitta Seeck; Karl Lothard Schaller; Christoph M. Michel

OBJECTIVE We investigated the contribution of electrocortical stimulation (ECS), induced high gamma electrocorticography (hgECoG) and functional magnetic resonance imaging (fMRI) for the localization of somatosensory and language cortex. METHODS 23 Epileptic patients with subdural electrodes underwent a protocol of somatosensory stimulation and/or an auditory semantic decision task. 14 Patients did the same protocol with fMRI prior to implantation. RESULTS ECS resulted in the identification of thumb somatosensory cortex in 12/16 patients. Taking ECS as a gold standard, hgECoG and fMRI identified 53.6/33% of true positive and 4/12% of false positive contacts, respectively. The hgECoG false positive sites were all found in the hand area of the post-central gyrus. ECS localized language-related sites in 7/12 patients with hgECoG and fMRI showing 50/64% of true positive and 8/23% of false positive contacts, respectively. All but one of the hgECoG/fMRI false positive contacts were located in plausible language areas. Four patients showed post-surgical impairments: the resection included the sites positively indicated by ECS, hgECoG and fMRI in 3 patients and a positive hgECoG site in one patient. CONCLUSIONS HgECoG and fMRI provide additional localization information in patients who cannot sufficiently collaborate during ECS. SIGNIFICANCE HgECoG and fMRI make the cortical mapping procedure more flexible not only by identifying priority cortical sites for ECS or when ECS is not feasible, but also when ECS does not provide any result.


Epilepsy Research | 2014

Localization of the epileptogenic tuber with electric source imaging in patients with tuberous sclerosis.

Odysseas Kargiotis; Agustina Maria Lascano; Valentina Garibotto; Laurent Spinelli; Melanie Genetti; Michael Wissmeyer; Christian Korff; Shahan Momjian; Christoph M. Michel; Margitta Seeck; Serge Vulliemoz

PURPOSE Patients with tuberous sclerosis complex (TSC) often suffer from medically refractory epilepsy. Despite the multifocality of the disease, resection of the most epileptogenic tuber can lead to major improvement of seizure control. Therefore, non-invasive imaging methods are needed for detecting epileptogenic sources. We assessed the utility of electric source imaging (ESI) in the presurgical work-up of TSC patients and its combination with Positron Emission Tomography (PET) and ictal/interictal Single Photon Emission Computed Tomography (SISCOM). METHODS Thirteen patients underwent high density ESI (8/13) and/or low density ESI (13/13). We investigated the concordance between ESI, PET, SISCOM and the resection area in the 11 operated patients (nine seizure-free). RESULTS High resolution ESI was partially or completely concordant with the resected area in 5/5 seizure free patients. Low resolution ESI was partially or completely concordant in 7/9 seizure free patients. PET and SPECT were concordant (partially or completely) in 8/9 and 6/9 cases, respectively. We found multifocal ESI sources in 2/9 seizure free patients, marked multifocal PET hypometabolism in 3/9 and multifocal SISCOM in 4/9. The region of concordant ESI and PET accurately predicted the dominant epileptogenic source in 6/9 patients. The same was true for concordant ESI and SISCOM in 4/9 patients, whereas the coregistration of only PET and SISCOM was insufficient in 3/9 successfully operated cases. The combination of all three imaging modalities could successfully identify the resection area in all but one patient with a favorable post-operation outcome. CONCLUSION ESI is an important tool for the pre-surgical evaluation of TSC patients. It complements PET and SPECT results and can improve the management of candidates for surgery when integrated with electro-clinical information.


Neurosurgery | 2014

Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging

Agustina Maria Lascano; Frédéric Grouiller; Melanie Genetti; Laurent Spinelli; Margitta Seeck; Karl Lothard Schaller; Christoph M. Michel

BACKGROUND Resection of abnormal brain tissue lying near the sensorimotor cortex entails precise localization of the central sulcus. Mapping of this area is achieved by applying invasive direct cortical electrical stimulation. However, noninvasive methods, particularly functional magnetic resonance imaging (fMRI), are also used. As a supplement to fMRI, localization of somatosensory-evoked potentials (SEPs) recorded with an electroencephalogram (EEG) has been proposed, but has not found its place in clinical practice. OBJECTIVE To assess localization accuracy of the hand somatosensory cortex with SEP source imaging. METHODS We applied electrical source imaging in 49 subjects, recorded with high-density EEG (256 channels). We compared it with fMRI in 18 participants and with direct cortical electrical stimulation in 6 epileptic patients. RESULTS Comparison of SEP source imaging with fMRI indicated differences of 3 to 8 mm, with the exception of the mesial-distal orientation, where variances of up to 20 mm were found. This discrepancy is explained by the fact that the source maximum of the first SEP peak is localized deep in the central sulcus (area 3b), where information initially arrives. Conversely, fMRI showed maximal signal change on the lateral surface of the postcentral gyrus (area 1), where sensory information is integrated later in time. Electrical source imaging and fMRI showed mean Euclidean distances of 13 and 14 mm, respectively, from the contacts where electrocorticography elicited sensory phenomena of the contralateral upper limb. CONCLUSION SEP source imaging, based on high-density EEG, reliably identifies the depth of the central sulcus. Moreover, it is a simple, flexible, and relatively inexpensive alternative to fMRI.


Epilepsy Research | 2013

Tracking the source of cerebellar epilepsy: Hemifacial seizures associated with cerebellar cortical dysplasia

Agustina Maria Lascano; Alia Lemkaddem; Cristina Granziera; Christian Korff; Colette Boex; Benoit John Jenny; Thomas Schmitt-Mechelke; Jean-Philippe Thiran; Valentina Garibotto; Maria Isabel Vargas; Karl Lothard Schaller; Margitta Seeck; Serge Vulliemoz

Traditionally, subcortical structures such as the cerebellum are supposed to exert a modulatory effect on epileptic seizures, rather than being the primary seizure generator. We report a 14-month old girl presenting, since birth, with seizures symptomatic of a right cerebellar dysplasia, manifested as paroxystic contralateral hemifacial spasm and ipsilateral facial weakness. Multimodal imaging was used to investigate both anatomical landmarks related to the cerebellar lesion and mechanisms underlying seizure generation. Electric source imaging (ESI) supported the hypothesis of a right cerebellar epileptogenic generator in concordance with nuclear imaging findings; subsequently validated by intra-operative intralesional recordings. Diffusion spectrum imaging-related tractography (DSI) showed severe cerebellar structural abnormalities confirmed by histological examination. We suggest that hemispheric cerebellar lesions in cases like this are likely to cause epilepsy via an effect on the facial nuclei through ipsilateral and contralateral aberrant connections.

Collaboration


Dive into the Agustina Maria Lascano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Verena Brodbeck

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge