Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Spinelli is active.

Publication


Featured researches published by Laurent Spinelli.


Clinical Neurophysiology | 2004

EEG source imaging

Christoph M. Michel; Micah M. Murray; Göran Lantz; Sara L. Gonzalez; Laurent Spinelli; Rolando Grave de Peralta

OBJECTIVE Electroencephalography (EEG) is an important tool for studying the temporal dynamics of the human brains large-scale neuronal circuits. However, most EEG applications fail to capitalize on all of the datas available information, particularly that concerning the location of active sources in the brain. Localizing the sources of a given scalp measurement is only achieved by solving the so-called inverse problem. By introducing reasonable a priori constraints, the inverse problem can be solved and the most probable sources in the brain at every moment in time can be accurately localized. METHODS AND RESULTS Here, we review the different EEG source localization procedures applied during the last two decades. Additionally, we detail the importance of those procedures preceding and following source estimation that are intimately linked to a successful, reliable result. We discuss (1) the number and positioning of electrodes, (2) the varieties of inverse solution models and algorithms, (3) the integration of EEG source estimations with MRI data, (4) the integration of time and frequency in source imaging, and (5) the statistical analysis of inverse solution results. CONCLUSIONS AND SIGNIFICANCE We show that modern EEG source imaging simultaneously details the temporal and spatial dimensions of brain activity, making it an important and affordable tool to study the properties of cerebral, neural networks in cognitive and clinical neurosciences.


Clinical Neurophysiology | 2003

Epileptic source localization with high density EEG: how many electrodes are needed?

G Lantz; R. Grave de Peralta; Laurent Spinelli; Margitta Seeck; Christoph M. Michel

OBJECTIVE Electroencephalography (EEG) source reconstruction is becoming recognized as a useful technique to non-invasively localize the epileptic focus. Whereas, large array magnetoencephalography (MEG) systems are available since quite some time, application difficulties have previously prevented multichannel EEG recordings. Recently, however, EEG systems which allow for quick (10-20min) application of, and recording from, up to 125 electrodes have become available. The purpose of the current investigation was to systematically compare the accuracy of epileptic source localization with high electrode density to that obtained with sparser electrode setups. METHODS Interictal epileptiform activity was recorded with 123 electrodes in 14 epileptic patients undergoing presurgical evaluation. Each single epileptiform potential was down sampled to 63 and 31 electrodes, and a distributed source model (EPIFOCUS) was used to reconstruct the sources with the 3 different electrode configurations. The localization accuracy with the 3 electrode setups was then assessed, by determining the distance from the inverse solution, maximum of each single spike to the epileptogenic lesion. RESULTS In 9/14 patients, the distance from the EEG source to the lesion was significantly smaller with 63 than with 31 electrodes, and increasing the number of electrodes to 123 increased this number of patients from 9 to 11. Simulations confirmed the relation between the number of electrodes and localization accuracy. CONCLUSIONS The results illustrate the necessity of multichannel EEG recordings for high source location accuracy in epileptic patients.


Brain | 2011

Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients

Verena Brodbeck; Laurent Spinelli; Agustina Maria Lascano; Michael Wissmeier; Maria Isabel Vargas; Serge Vulliemoz; Claudio Pollo; Karl Lothard Schaller; Christoph M. Michel; Margitta Seeck

Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128–256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluation.


Brain Topography | 2000

Electromagnetic inverse solutions in anatomically constrained spherical head models.

Laurent Spinelli; Sara L. Gonzalez Andino; Göran Lantz; Margitta Seeck; Christoph M. Michel

Two classes of functional neuroimaging methods exist: hemodynamic techniques such as PET and fMRI, and electromagnetic techniques such as EEG/ERP and MEG. In order to fusion these images with anatomical information, co-registration with volumetric MRI is needed. While such co-registration techniques are well established for hemodynamic images, additional steps are needed for electromagnetic recordings, because the activity is only recorded on the scalp surface and inverse solutions based on specific head models have to be used to estimate the 3-dimensional current distribution. To date most of the experimental and clinical studies use multi-shell concentric sphere models of the head, solve the inverse problem on this simplistic model, and then co-register the solution with the MRI using homogeneous transform operations. Contrary to this standard method, we here propose to map the MRI to the spherical system by defining transformation operations that transform the MRI to a best-fitting sphere. Once done so, the solution points are defined in the cerebral tissue of this deformed MRI and the lead field for the distributed linear inverse solutions is calculated for this solution space. The method, that we call SMAC (Spherical Model with Anatomical Constrains) is tested with simulations, as well as with the following real data: 1) estimation of the sources of visual evoked potentials to unilateral stimulation from data averaged over subjects, and 2) localization of interictal discharges of two epileptic patients, one with a temporal, the other with an occipital focus, both confirmed by seizure freedom after resection of the epileptogenic region.


Journal of Clinical Neurophysiology | 2004

128-channel EEG source imaging in epilepsy: Clinical yield and localization precision

Christoph M. Michel; Göran Lantz; Laurent Spinelli; F. Rolando Grave De Peralta; Theodor Landis; Margitta Seeck

The authors evaluated the feasibility, clinical yield, and localization precision of high-resolution EEG source imaging of interictal epileptic activity. A consecutive series of 44 patients with intractable epilepsy of various causes, who underwent a comprehensive presurgical epilepsy evaluation, were subjected to a 128-channel EEG recording. A standardized source imaging procedure constrained to the individual gray matter was applied to the averaged spikes of each patient. In 32 patients, the presurgical workup identified a focal epileptogenic area. The 128-channel EEG source imaging correctly localized this area in 30 of these patients (93.7%). Imprecise localization was explained by simplifications of the recordings and analysis procedure, which was accepted for the benefit of speed and standardization. In a subgroup of 24 patients who underwent operations, the sublobar precision of the 128-channel EEG source imaging was evaluated by calculating the distance of the source maximum to the resected area. This analysis revealed zero distance in 19 cases (79%). The authors conclude that high-resolution interictal EEG source imaging is a valuable noninvasive functional neuroimaging technique. The speed, ease, flexibility, and low cost of this technique warrant its use in clinical practice.


Brain | 2011

With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging

Frédéric Grouiller; R Thornton; Kristina Groening; Laurent Spinelli; John S. Duncan; Karl Lothard Schaller; Michael Siniatchkin; Louis Lemieux; Margitta Seeck; Christoph M. Michel; Serge Vulliemoz

In patients with medically refractory focal epilepsy who are candidates for epilepsy surgery, concordant non-invasive neuroimaging data are useful to guide invasive electroencephalographic recordings or surgical resection. Simultaneous electroencephalography and functional magnetic resonance imaging recordings can reveal regions of haemodynamic fluctuations related to epileptic activity and help localize its generators. However, many of these studies (40-70%) remain inconclusive, principally due to the absence of interictal epileptiform discharges during simultaneous recordings, or lack of haemodynamic changes correlated to interictal epileptiform discharges. We investigated whether the presence of epilepsy-specific voltage maps on scalp electroencephalography correlated with haemodynamic changes and could help localize the epileptic focus. In 23 patients with focal epilepsy, we built epilepsy-specific electroencephalographic voltage maps using averaged interictal epileptiform discharges recorded during long-term clinical monitoring outside the scanner and computed the correlation of this map with the electroencephalographic recordings in the scanner for each time frame. The time course of this correlation coefficient was used as a regressor for functional magnetic resonance imaging analysis to map haemodynamic changes related to these epilepsy-specific maps (topography-related haemodynamic changes). The method was first validated in five patients with significant haemodynamic changes correlated to interictal epileptiform discharges on conventional analysis. We then applied the method to 18 patients who had inconclusive simultaneous electroencephalography and functional magnetic resonance imaging studies due to the absence of interictal epileptiform discharges or absence of significant correlated haemodynamic changes. The concordance of the results with subsequent intracranial electroencephalography and/or resection area in patients who were seizure free after surgery was assessed. In the validation group, haemodynamic changes correlated to voltage maps were similar to those obtained with conventional analysis in 5/5 patients. In 14/18 patients (78%) with previously inconclusive studies, scalp maps related to epileptic activity had haemodynamic correlates even when no interictal epileptiform discharges were detected during simultaneous recordings. Haemodynamic changes correlated to voltage maps were spatially concordant with intracranial electroencephalography or with the resection area. We found better concordance in patients with lateral temporal and extratemporal neocortical epilepsy compared to medial/polar temporal lobe epilepsy, probably due to the fact that electroencephalographic voltage maps specific to lateral temporal and extratemporal epileptic activity are more dissimilar to maps of physiological activity. Our approach significantly increases the yield of simultaneous electroencephalography and functional magnetic resonance imaging to localize the epileptic focus non-invasively, allowing better targeting for surgical resection or implantation of intracranial electrode arrays.


Journal of Clinical Neurophysiology | 2003

Propagation of interictal epileptiform activity can lead to erroneous source localizations: A 128-channel EEG mapping study

Göran Lantz; Laurent Spinelli; Margitta Seeck; Rolando Grave de Peralta Menendez; Cyrille C. Sottas; Christoph M. Michel

Summary The relationship between interictal epileptiform activity and the epileptogenic zone is complex. Despite the fact that intraspike propagation may occur, the peak of the spike is often used as indicator of the site of ictal onset. In this investigation, spatio-temporal segmentation was used to demonstrate this intraspike propagation and to determine at which time point the voltage pattern corresponded best to the epileptogenic zone. Sixteen patients with focal epilepsy were recorded with 125-channel EEG. Between one and five different map topographies were identified during the rising phase of the spike. A distributed source model (EPIFOCUS) was used to localize the source of each map, and the distance from the EPIFOCUS maximum to the anatomic lesion was calculated. In only 3 of 16 cases was the entire rising phase of the spike accounted for by one single map. In another five patients, several maps were obtained, although all were located within the epileptogenic lesion. In the remaining eight patients, however, parts of the rising phase had locations outside the epileptogenic lesion. On the average, 80% of the rising time had within lesion locations the most reliable time period being halfway between onset and peak. The results illustrate that intraspike propagation has to be considered in source localizations, and they also illustrate the usefulness of spatio-temporal segmentation for visualizing this propagation.


Journal of Clinical Neurophysiology | 1999

Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation

Christoph M. Michel; R. Grave de Peralta; Göran Lantz; S.L. Gonzalez Andino; Laurent Spinelli; Olaf Blanke; Theodor Landis; Margitta Seeck

In the attempts to localize electric sources in the brain on the basis of multichannel EEG and/or MEG measurements, distributed source estimation procedures have become of increasing interest. Several commercial software packages offer such localization programs and results using these methods are seen more and more frequently in the literature. It is crucial that the users understand the similarities and differences of these methods and that they become aware of the advantages and limitations that are inherent to each approach. This review provides this information from a theoretical as well as from a practical point of view. The theoretical part gives the algorithmic basis of the electromagnetic inverse problem and shows how the different a priori assumptions are formally integrated in these equations. The authors restrict this formalism to the linear inverse solutions i.e., those solutions in which the inversion procedure can be represented as a matrix applied to the data. It will be shown that their properties can be best characterized by their resolution kernels and that methods with optimal resolution matrices can be designed. The authors also discuss the important problem of regularization strategies that are used to minimize the influence of noise. Finally, a new kind of inverse solution, termed ELECTRA (for ELECTRical Analysis), is presented that is based on constraining the source model on the basis of the currents that can actually be measured by the scalp recorded EEG. The practical part of the review illustrates the localization procedures with different clinical data sets. Three aspects become important when working with real data: 1) Clinical data is usually far from ideal (limited number of electrodes, noise, etc.). The behavior of inverse procedures in such unfortunate situations has to be evaluated. 2) The selection of the time points or time periods of interest is crucial, especially in the analysis of spontaneous EEG. 3) Additional information coming from other modalities is usually available and can be incorporated. The authors are illustrating these important points in the case of interictal and ictal epileptiform activity. Spike averaging, frequency domain source localization, and temporal segmentation based on electric field topographies will be discussed. Finally, the technique of EEG-triggered functional magnetic resonance imaging (fMRI) will be illustrated, where EEG is recorded in the magnet and is used to synchronize fMRI acquisition with interictal events. The analysis of both functional data, i.e. the EEG in terms of three-dimensional source localization and the EEG-triggered fMRI, combines the advantages of the two techniques: the temporal resolution of the EEG and the spatial resolution of the fMRI.


Neuroreport | 2000

Location of the human frontal eye field as defined by electrical cortical stimulation: anatomical, functional and electrophysiological characteristics.

Olaf Blanke; Laurent Spinelli; Gregor Thut; Christoph M. Michel; S Perrig; Theodor Landis; Margitta Seeck

Electrical cortical stimulation of the human frontal gyri and the precentral gyrus has been shown to induce eye movements and it has classically been assumed that these stimulationinduced eye movements result from electrical interference with the human homologue of the monkey frontal eye field (FEF). However, amplitude of electrical current and induced type of eye movement, which are essential for the determination of eye fields in the monkey. have not been investigated systematically in man. We applied electrical cortical stimulation in the lateral frontal cortex in six epileptic patients. Sites whose stimulation resulted in eye movements were determined with respect to gyral and sulcal patterns, Talairach coordinates and neighboring functions as found by electrical cortical stimulation. Based on this approach, a restricted location of the electrically defined FEF is proposed within a larger oculomotor region on the posterior part of the middle frontal gyrus.


Epilepsia | 2006

EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup.

Francesca Sperli; Laurent Spinelli; Margitta Seeck; Mary Kurian; Christoph M. Michel; Göran Lantz

Summary:  Purpose: Epilepsy is a relatively frequent disease in children, with considerable impact on cognitive and social life. Successful epilepsy surgery depends on unambiguous focus identification and requires a comprehensive presurgical workup, including several neuroimaging techniques [magnetic resonance imaging, positron emission tomography (PET), and single‐photon emission computed tomography (SPECT)]. These may be difficult to apply in younger or developmentally delayed children or both, requiring sedation, and hence, a significant workforce. Modern electric source imaging (ESI) provides accurate epileptic source‐localization information in most patients, with minimal patient discomfort or need for cooperation. The purpose of the present study was to determine the usefulness of ESI in pediatric EEG recordings performed with routine electrode arrays.

Collaboration


Dive into the Laurent Spinelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Blanke

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge