Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmad M. Khalil is active.

Publication


Featured researches published by Ahmad M. Khalil.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression

Ahmad M. Khalil; Mitchell Guttman; Maite Huarte; Manuel Garber; Arjun Raj; Dianali Rivea Morales; Kelly Thomas; Aviva Presser; Bradley E. Bernstein; Alexander van Oudenaarden; Aviv Regev; Eric S. Lander; John L. Rinn

We recently showed that the mammalian genome encodes >1,000 large intergenic noncoding (linc)RNAs that are clearly conserved across mammals and, thus, functional. Gene expression patterns have implicated these lincRNAs in diverse biological processes, including cell-cycle regulation, immune surveillance, and embryonic stem cell pluripotency. However, the mechanism by which these lincRNAs function is unknown. Here, we expand the catalog of human lincRNAs to ≈3,300 by analyzing chromatin-state maps of various human cell types. Inspired by the observation that the well-characterized lincRNA HOTAIR binds the polycomb repressive complex (PRC)2, we tested whether many lincRNAs are physically associated with PRC2. Remarkably, we observe that ≈20% of lincRNAs expressed in various cell types are bound by PRC2, and that additional lincRNAs are bound by other chromatin-modifying complexes. Also, we show that siRNA-mediated depletion of certain lincRNAs associated with PRC2 leads to changes in gene expression, and that the up-regulated genes are enriched for those normally silenced by PRC2. We propose a model in which some lincRNAs guide chromatin-modifying complexes to specific genomic loci to regulate gene expression.


Nature Medicine | 2008

Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase

Mohammad Ali Faghihi; Farzaneh Modarresi; Ahmad M. Khalil; Douglas E. Wood; Barbara G. Sahagan; Todd E. Morgan; Caleb E. Finch; Georges St. Laurent; Paul J. Kenny; Claes Wahlestedt

Recent efforts have revealed that numerous protein-coding messenger RNAs have natural antisense transcript partners, most of which seem to be noncoding RNAs. Here we identify a conserved noncoding antisense transcript for β-secretase-1 (BACE1), a crucial enzyme in Alzheimers disease pathophysiology. The BACE1-antisense transcript (BACE1-AS) regulates BACE1 mRNA and subsequently BACE1 protein expression in vitro and in vivo. Upon exposure to various cell stressors including amyloid-β 1–42 (Aβ 1–42), expression of BACE1-AS becomes elevated, increasing BACE1 mRNA stability and generating additional Aβ 1–42 through a post-transcriptional feed-forward mechanism. BACE1-AS concentrations were elevated in subjects with Alzheimers disease and in amyloid precursor protein transgenic mice. These data show that BACE1 mRNA expression is under the control of a regulatory noncoding RNA that may drive Alzheimers disease–associated pathophysiology. In summary, we report that a long noncoding RNA is directly implicated in the increased abundance of Aβ 1–42 in Alzheimers disease.


Nucleic Acids Research | 2012

Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs

Victoria A. Moran; Ranjan J. Perera; Ahmad M. Khalil

The recent discovery that the human and other mammalian genomes produce thousands of long non-coding RNAs (lncRNAs) raises many fascinating questions. These mRNA-like molecules, which lack significant protein-coding capacity, have been implicated in a wide range of biological functions through diverse and as yet poorly understood molecular mechanisms. Despite some recent insights into how lncRNAs function in such diverse cellular processes as regulation of gene expression and assembly of cellular structures, by and large, the key questions regarding lncRNA mechanisms remain to be answered. In this review, we discuss recent advances in understanding the biology of lncRNAs and propose avenues of investigation that may lead to fundamental new insights into their functions and mechanisms of action. Finally, as numerous lncRNAs are dysregulated in human diseases and disorders, we also discuss potential roles for these molecules in human health.


Nature Biotechnology | 2008

A small molecule enhances RNA interference and promotes microRNA processing

Ge Shan; Yujing Li; Junliang Zhang; Wendi Li; Keith E. Szulwach; Ranhui Duan; Mohammad Ali Faghihi; Ahmad M. Khalil; Lianghua Lu; Zain Paroo; Anthony W.S. Chan; Zhangjie Shi; Qinghua Liu; Claes Wahlestedt; Chuan He; Peng Jin

Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are sequence-specific post-transcriptional regulators of gene expression. Although major components of the RNA interference (RNAi) pathway have been identified, regulatory mechanisms for this pathway remain largely unknown. Here we demonstrate that the RNAi pathway can be modulated intracellularly by small molecules. We have developed a cell-based assay to monitor the activity of the RNAi pathway and find that the small-molecule enoxacin (Penetrex) enhances siRNA-mediated mRNA degradation and promotes the biogenesis of endogenous miRNAs. We show that this RNAi-enhancing activity depends on the trans-activation-responsive region RNA-binding protein. Our results provide a proof-of-principle demonstration that small molecules can be used to modulate the activity of the RNAi pathway. RNAi enhancers may be useful in the development of research tools and therapeutics.


PLOS ONE | 2008

A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome.

Ahmad M. Khalil; Mohammad Ali Faghihi; Farzaneh Modarresi; Claes Wahlestedt

Several genome-wide transcriptomics efforts have shown that a large percentage of the mammalian genome is transcribed into RNAs, however, only a small percentage (1–2%) of these RNAs is translated into proteins. Currently there is an intense interest in characterizing the function of the different classes of noncoding RNAs and their relevance to human disease. Using genomic approaches we discovered FMR4, a primate-specific noncoding RNA transcript (2.4 kb) that resides upstream and likely shares a bidirectional promoter with FMR1. FMR4 is a product of RNA polymerase II and has a similar half-life to FMR1. The CGG expansion in the 5′ UTR of FMR1 appears to affect transcription in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X patients and up-regulated in premutation carriers. Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However, FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the overexpression of FMR4 caused an increase in cell proliferation. Collectively, our results demonstrate an antiapoptotic function of FMR4 and provide evidence that a well-studied genomic locus can show unexpected functional complexity. It cannot be excluded that altered FMR4 expression might contribute to aspects of the clinical presentation of fragile X syndrome and/or related disorders.


Molecular Cell | 2012

Decapping of long noncoding RNAs regulates inducible genes.

Sarah Geisler; Lisa Lojek; Ahmad M. Khalil; Kristian E. Baker; Jeff Coller

Decapping represents a critical control point in regulating expression of protein coding genes. Here, we demonstrate that decapping also modulates expression of long noncoding RNAs (lncRNAs). Specifically, levels of >100 lncRNAs in yeast are controlled by decapping and are degraded by a pathway that occurs independent of decapping regulators. We find many lncRNAs degraded by DCP2 are expressed proximal to inducible genes. Of these, we show several genes required for galactose utilization are associated with lncRNAs that have expression patterns inversely correlated with their mRNA counterpart. Moreover, decapping of these lncRNAs is critical for rapid and robust induction of GAL gene expression. Failure to destabilize a lncRNA known to exert repressive histone modifications results in perpetuation of a repressive chromatin state that contributes to reduced plasticity of gene activation. We propose that decapping and lncRNA degradation serve a vital role in transcriptional regulation specifically at inducible genes.


Seminars in Cell & Developmental Biology | 2011

RNA-Protein Interactions in Human Health and Disease

Ahmad M. Khalil; John L. Rinn

It is now clear that the genomes of many organisms encode thousands of large and small non-coding (nc)RNAs. However, relative to the discovery of ncRNAs the functions and mechanisms of ncRNAs remain disproportionately understood. One intriguing observation is that many ncRNAs are found to be associated with protein complexes including those involved in transcription regulation, post-transcriptional silencing, and epigentic regulation. These observations suggest that the functions and mechanisms of many of these ncRNAs may depend on their interactions with various protein complexes within the cell. In this review we discuss well known examples as well as newly emerging evidence of a widespread RNA-protein interactions in distinct biological processes in a wide range of organisms, and highlight the importance of developing new technologies to dissect these interactions. Finally, we propose that mis-regulation of ncRNAs interactions with their protein partners may contribute to human disease, and open up a novel approach to therapeutic interventions.


Frontiers in Genetics | 2012

Emerging Roles for Long Non-Coding RNAs in Cancer and Neurological Disorders

Courtney N. Niland; Callie R. Merry; Ahmad M. Khalil

The recent discovery of thousands of long non-coding (lnc)RNAs in the human genome has prompted investigation of the potential roles of these molecules in human biology and medicine. Indeed, it is now well documented that many lncRNAs are involved in key biological processes, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing of pre-mRNA, nuclear organization; and potentially many other biological processes, which are yet to be elucidated. Recently, a number of studies have also reported that lncRNAs are dysregulated in a number of human diseases, including several cancers and neurological disorders. Although many of these studies have fallen short of implicating lncRNAs as causative, they suggest potential roles that warrant further in depth investigations. In this review, we discuss the current state of knowledge regarding the roles of lncRNAs in cancer and neurological disorders, and suggest potential future directions in this rapidly emerging field.


EMBO Reports | 2010

Nucleosome occupancy landscape and dynamics at mouse recombination hotspots

Irina V. Getun; Zhen K. Wu; Ahmad M. Khalil; Philippe R.J. Bois

During meiosis, paternal and maternal homologous chromosomes recombine at specific recombination sites named hotspots. What renders 2% of the mammalian genomes permissive to meiotic recombination by allowing Spo11 endonuclease to initiate double‐strand breaks is largely unknown. Work in yeast has shown that chromatin accessibility seems to be important for this activity. Here, we define nucleosome profiles and dynamics at four mouse recombination hotspots by purifying highly enriched fractions of meiotic cells. We found that nucleosome occupancy is generally stable during meiosis progression. Interestingly, the cores of recombination hotspots have largely open chromatin structure, and the localization of the few nucleosomes present in these cores correlates precisely with the crossover‐free zones in recombinogenic domains. Collectively, these high‐resolution studies suggest that nucleosome occupancy seems to direct, at least in part, how meiotic recombination events are processed.


Human Molecular Genetics | 2015

DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer.

Callie R. Merry; Megan E. Forrest; Jessica N. Sabers; Lydia Beard; Xing Huang Gao; Maria Hatzoglou; Mark W. Jackson; Zhenghe Wang; Sanford D. Markowitz; Ahmad M. Khalil

The cancer epigenome exhibits global loss of DNA methylation, which contributes to genomic instability and aberrant gene expression by mechanisms that are yet to be fully elucidated. We previously discovered over 3300 long non-coding (lnc)RNAs in human cells and demonstrated that specific lncRNAs regulate gene expression via interactions with chromatin-modifying complexes. Here, we tested whether lncRNAs could also associate with DNA methyltransferases to regulate DNA methylation and gene expression. Using RIP-seq, we identified a subset of lncRNAs that interact with the DNA methyltransferase DNMT1 in a colon cancer cell line, HCT116. One lncRNA, TCONS_00023265, which we named DACOR1 (DNMT1-associated Colon Cancer Repressed lncRNA 1), shows high, tissue-specific expression in the normal colon (including colon crypts) but was repressed in a panel of colon tumors and patient-derived colon cancer cell lines. We identified the genomic occupancy sites of DACOR1, which we found to significantly overlap with known differentially methylated regions (DMRs) in colon tumors. Induction of DACOR1 in colon cancer cell lines significantly reduced their ability to form colonies in vitro, suggesting a growth suppressor function. Consistent with the observed phenotype, induction of DACOR1 led to the activation of tumor-suppressor pathways and attenuation of cancer-associated metabolic pathways. Notably, DACOR1 induction resulted in down-regulation of Cystathionine β-synthase, which is known to lead to increased levels of S-adenosyl methionine-the key methyl donor for DNA methylation. Collectively, our results demonstrate that deregulation of DNMT1-associated lncRNAs contributes to aberrant DNA methylation and gene expression during colon tumorigenesis.

Collaboration


Dive into the Ahmad M. Khalil's collaboration.

Top Co-Authors

Avatar

Callie R. Merry

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Megan E. Forrest

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Cheryl L. Thompson

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyndsay Harris

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanford D. Markowitz

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Courtney N. Niland

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge