Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed Chadli is active.

Publication


Featured researches published by Ahmed Chadli.


Journal of Biological Chemistry | 2013

Gedunin Inactivates the Co-chaperone p23 Protein Causing Cancer Cell Death by Apoptosis

Chaitanya A. Patwardhan; Abdul H. Fauq; Laura B. Peterson; Charles A. Miller; Brian S. J. Blagg; Ahmed Chadli

Background: The Hsp90 chaperoning machine is an exciting therapeutic target for cancer treatment. Results: We report that the natural product gedunin inactivates the Hsp90 co-chaperone p23 in vitro and in vivo. The lethal effect of gedunin-p23 complex on cancer cells is amplified by caspase-7-mediated cleavage of the co-chaperone, leading to apoptotic cell death. Conclusions: Gelduin binds directly to p23 leading to inactivation of the Hsp90 machine and selective destabilization of steroid receptors. Significance: Gedunin is a promising compound to develop anti-cancer therapeutics. Pharmacological inhibition of Hsp90 is an exciting option for cancer therapy. The clinical efficacy of Hsp90 inhibitors is, however, less than expected. Binding of the co-chaperone p23 to Hsp90 and induced overexpression of anti-apoptotic proteins Hsp70 and Hsp27 are thought to contribute to this outcome. Herein, we report that the natural product gedunin may provide a new alternative to inactivate the Hsp90 machine. We show that gedunin directly binds to p23 and inactivates it, without overexpression of Hsp27 and relatively modest induction of Hsp70. Using molecular docking and mutational analysis, we mapped the gedunin-binding site on p23. Functional analysis shows that gedunin inhibits the p23 chaperoning activity, blocks its cellular interaction with Hsp90, and interferes with p23-mediated gene regulation. Cell treatment with gedunin leads to cancer cell death by apoptosis through inactivation of p23 and activation of caspase 7, which cleaves p23 at the C terminus. These results provide important insight into the molecular mechanism of action of this promising lead compound.


Journal of Biological Chemistry | 2010

Celastrol Inhibits Hsp90 Chaperoning of Steroid Receptors by Inducing Fibrillization of the Co-chaperone p23

Ahmed Chadli; Sara J. Felts; Qin Wang; William P. Sullivan; Maria Victoria Botuyan; Abdul H. Fauq; Marina Ramirez-Alvarado; Georges Mer

Hsp90 is an ATP-dependent molecular chaperone. The best characterized inhibitors of Hsp90 target its ATP binding pocket, causing nonselective degradation of Hsp90 client proteins. Here, we show that the small molecule celastrol inhibits the Hsp90 chaperoning machinery by inactivating the co-chaperone p23, resulting in a more selective destabilization of steroid receptors compared with kinase clients. Our in vitro and in vivo results demonstrate that celastrol disrupts p23 function by altering its three-dimensional structure, leading to rapid formation of amyloid-like fibrils. This study reveals a unique inhibition mechanism of p23 by a small molecule that could be exploited in the dissection of protein fibrillization processes as well as in the therapeutics of steroid receptor-dependent diseases.


Antioxidants & Redox Signaling | 2011

Hsp90 regulates NADPH oxidase activity and is necessary for superoxide but not hydrogen peroxide production

Feng Chen; Deepesh Pandey; Ahmed Chadli; John D. Catravas; Teng Chen; David Fulton

The goal of this study was to identify whether heat-shock protein 90 (Hsp90) regulates the production of superoxide and other reactive oxygen species from the NADPH oxidases (Nox). We found that pharmacological and genetic inhibition of Hsp90 directly reduced Nox5-derived superoxide without secondarily modifying signaling events. Coimmunoprecipitation and bioluminescence resonance energy transfer studies suggest that the C-terminus of Nox5 binds to Hsp90. Long-term Hsp90 inhibition reduced Nox5 expression and provides further evidence that Nox5 is an Hsp90 client protein. Inhibitors of Hsp90 also reduced superoxide from Nox1, Nox2 (neutrophils), and Nox3. However, Nox4, which emits only hydrogen peroxide, was unaffected by Hsp90 inhibitors. Hydrogen peroxide production from the other Nox enzymes was not affected by short-term inhibition of Hsp90, but long-term inhibition reduced production of all reactive oxygen species coincident with loss of enzyme expression. Expression of chimeric Nox enzymes consisting of N-terminal Nox1 or Nox3 and C-terminal Nox4 resulted in only hydrogen peroxide formation that was insensitive to Hsp90 inhibitors. We conclude that Hsp90 binds to the C-terminus of Noxes1-3 and 5 and is necessary for enzyme stability and superoxide production. Hsp90 does not bind to the C-terminus of Nox4 and is not required for hydrogen peroxide formation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Opposing Actions of Heat Shock Protein 90 and 70 Regulate Nicotinamide Adenine Dinucleotide Phosphate Oxidase Stability and Reactive Oxygen Species Production

Feng Chen; Yanfang Yu; Jin Qian; Yusi Wang; Bo Cheng; Christiana Dimitropoulou; Vijay Patel; Ahmed Chadli; R. Dan Rudic; David W. Stepp; John D. Catravas; David Fulton

Objective—Excessive reactive oxygen species contribute to vascular dysfunction. We have previously shown that heat shock protein (Hsp90) inhibitors potently suppress Nox 1 to 3 and 5, and the goals of this study were to identify how molecular chaperones regulate Nox function. Methods and Results—In vitro, protein expression of Nox 1 to 2, 5 was decreased by Hsp90 inhibitors in multiple cell types (human pulmonary artery endothelial cells, neutrophils, macrophages, and human saphenous vein). In mice treated with Hsp90 inhibitors, Nox1 expression was reduced in lung along with reduced reactive oxygen species from leukocytes. Elevated reactive oxygen species production in obese (db/db) aorta was suppressed by Hsp90 inhibition. Hsp90 inhibitors did not alter Nox5 micro RNA levels, and proteasome inhibition prevented Nox2 and 5 protein degradation and increased ubiquitin incorporation. Inhibition of Hsp90 upregulated the expression of Hsp70 and Hsp70-bound Nox2, 5 and promoted degradation. Silencing Hsp70 prevented Hsp90 inhibitor–mediated degradation of Nox5. The Hsp70-regulated ubiquitin ligase, carboxyl terminus of Hsp70-interacting protein (CHIP), also bound Nox5 and promoted increased Nox5 ubiquitination and degradation. The chaperone binding and ubiquitination domains of CHIP were required, and the silencing of CHIP blunted Hsp90 inhibitor–mediated degradation of Nox2 and 5. Conclusion—We conclude that Hsp90 binds to and regulates Nox protein stability. These actions are opposed by Hsp70 and CHIP, which promote the ubiquitination and degradation of Nox proteins and reduce reactive oxygen species production.


Journal of Biological Chemistry | 2014

The Cochaperone SGTA (Small Glutamine-Rich Tetratricopeptide Repeat-Containing Protein Alpha) Demonstrates Regulatory Specificity for the Androgen, Glucocorticoid and Progesterone Receptors

Atanu Paul; Yenni A. Garcia; Bettina K. Zierer; Chaitanya A. Patwardhan; Omar Gutierrez; Zacariah L. Hildenbrand; Diondra C. Harris; Heather A. Balsiger; Jeffrey C. Sivils; Jill L. Johnson; Johannes Buchner; Ahmed Chadli; Marc B. Cox

Background: Cochaperones are important for the folding and activation of steroid hormone receptors. Results: The androgen receptor-associated cochaperone SGTA binds both Hsp70 and Hsp90 and regulates progesterone and glucocorticoid receptors. Conclusion: SGTA is a receptor-specific cochaperone that regulates distinct steps in the receptor chaperoning cycle. Significance: SGTA is a relevant factor in diseases that depend on androgens, progestins and/or glucocorticoids. Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity.


Pharmacological Research | 2014

Adenosine kinase inhibition protects the kidney against streptozotocin-induced diabetes through anti-inflammatory and anti-oxidant mechanisms.

Chelsey Pye; Nehal M. Elsherbiny; Ahmed S. Ibrahim; Gregory I. Liou; Ahmed Chadli; Mohamed Al-Shabrawey; Ahmed A. Elmarakby

Adenosine provides anti-inflammatory effects in cardiovascular disease via the activation of adenosine A2A receptors; however, the physiological effect of adenosine could be limited due to its phosphorylation by adenosine kinase. We hypothesized that inhibition of adenosine kinase exacerbates extracellular adenosine levels to reduce renal inflammation and injury in streptozotocin-induced diabetes. Diabetes was induced in male C57BL/6 mice by daily injection of streptozotocin (50mg/kg/day, i.p. for 5 days). Control and diabetic mice were then treated with the adenosine kinase inhibitor ABT702 (1.5mg/kg, i.p. two times a week for 8 weeks, n=7-8/group) or the vehicle (5% DMSO). ABT702 treatment reduced blood glucose level in diabetic mice (∼20%; P<0.05). ABT702 also reduced albuminuria and markers of glomerular injury, nephrinuria and podocalyxin excretion levels, in diabetic mice. Renal NADPH oxidase activity and urinary thiobarbituric acid reactive substances (TBARS) excretion, indices of oxidative stress, were also elevated in diabetic mice and ABT702 significantly reduced these changes. ABT702 increased renal endothelial nitric oxide synthase expression (eNOS) and nitrate/nitrite excretion levels in diabetic mice. In addition, the diabetic mice displayed an increase in renal macrophage infiltration, in association with increased renal NFκB activation. Importantly, treatment with ABT702 significantly reduced all these inflammatory parameters (P<0.05). Furthermore, ABT702 decreased glomerular permeability and inflammation and restored the decrease in glomerular occludin expression in vitro in high glucose treated human glomerular endothelial cells. Collectively, the results suggest that the reno-protective effects of ABT702 could be attributed to the reduction in renal inflammation and oxidative stress in diabetic mice.


Free Radical Biology and Medicine | 2015

Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones.

Feng Chen; Steven Haigh; Yanfang Yu; Tyler Benson; Yusi Wang; Xueyi Li; Huijuan Dou; Zsolt Bagi; Alexander D. Verin; David W. Stepp; Gábor Csányi; Ahmed Chadli; Neal L. Weintraub; Susan M.E. Smith; David Fulton

Heat shock protein 90 (Hsp90) is a molecular chaperone that orchestrates the folding and stability of proteins that regulate cellular signaling, proliferation and inflammation. We have previously shown that Hsp90 controls the production of reactive oxygen species by modulating the activity of Noxes1-3 and 5, but not Nox4. The goal of the current study was to define the regions on Nox5 that bind Hsp90 and determine how Hsp90 regulates enzyme activity. In isolated enzyme activity assays, we found that Hsp90 inhibitors selectively decrease superoxide, but not hydrogen peroxide, production. The addition of Hsp90 alone only modestly increases Nox5 enzyme activity but in combination with the co-chaperones, Hsp70, HOP, Hsp40, and p23 it robustly stimulated superoxide, but not hydrogen peroxide, production. Proximity ligation assays reveal that Nox5 and Hsp90 interact in intact cells. In cell lysates using a co-IP approach, Hsp90 binds to Nox5 but not Nox4, and the degree of binding can be influenced by calcium-dependent stimuli. Inhibition of Hsp90 induced the degradation of full length, catalytically inactive and a C-terminal fragment (aa398-719) of Nox5. In contrast, inhibition of Hsp90 did not affect the expression levels of N-terminal fragments (aa1-550) suggesting that Hsp90 binding maintains the stability of C-terminal regions. In Co-IP assays, Hsp90 was bound only to the C-terminal region of Nox5. Further refinement using deletion analysis revealed that the region between aa490-550 mediates Hsp90 binding. Converse mapping experiments show that the C-terminal region of Nox5 bound to the M domain of Hsp90 (aa310-529). In addition to Hsp90, Nox5 bound other components of the foldosome including co-chaperones Hsp70, HOP, p23 and Hsp40. Silencing of HOP, Hsp40 and p23 reduced Nox5-dependent superoxide. In contrast, increased expression of Hsp70 decreased Nox5 activity whereas a mutant of Hsp70 failed to do so. Inhibition of Hsp90 results in the loss of higher molecular weight complexes of Nox5 and decreased interaction between monomers. Collectively these results show that the C-terminal region of Nox5 binds to the M domain of Hsp90 and that the binding of Hsp90 and select co-chaperones facilitate oligomerization and the efficient production of superoxide.


Cancer Letters | 2015

UNC45A localizes to centrosomes and regulates cancer cell proliferation through ChK1 activation

Yasmeen Jilani; Su Lu; Huang Lei; Larry M. Karnitz; Ahmed Chadli

The UCS family of proteins regulates cellular functions through their interactions with myosin. Here we show that one member of this family, UNC45A, is also a novel centrosomal protein. UNC45A is required for cellular proliferation of cancer cell in vitro and for tumor growth in vivo through its ability to bind and regulate ChK1 nuclear-cytoplasmic localization in an Hsp90-independent manner. Immunocytochemical and biochemical fractionation studies revealed that UNC45A and ChK1 co-localize to the centrosome. Inhibition of UNC45A expression reduced ChK1 activation and its tethering to the centrosome, events required for proper centrosome function. Lack of UNC45A caused the accumulation of multi-nucleated cells, consistent with a defect in Chk1 regulation of centrosomes. These findings identify a novel centrosomal function for UNC45A and its role in cell proliferation and tumorigenesis.


Bioorganic & Medicinal Chemistry | 2015

Bioactive metabolites from Chaetomium aureum: Structure elucidation and inhibition of the Hsp90 machine chaperoning activity

Fatima Zahra Kabbaj; Su Lu; My El Abbes Faouzi; Bouchra Meddah; Peter Proksch; Y. Cherrah; Hans Josef Altenbach; Amal H. Aly; Ahmed Chadli; Abdessamad Debbab

Chemical investigation of the EtOAc extract of the fungus Chaetomium aureum, an endophyte of the Moroccan medicinal plant Thymelaea lythroides, afforded one new resorcinol derivative named chaetorcinol, together with five known metabolites. The structures of the isolated compounds were determined on the basis of one- and two-dimensional NMR spectroscopy and high-resolution mass spectrometry as well as by comparison with the literature. All compounds were tested for their activity towards the Hsp90 chaperoning machine in vitro using the progesterone receptor (PR) and rabbit reticulocyte lysate (RRL). Among the isolated compounds, only sclerotiorin efficiently inhibited the Hsp90 machine chaperoning activity. However, sclerotiorin showed no cytotoxic effect on breast cancer Hs578T, MDA-MB-231 and prostate cancer LNCaP cell lines. Interestingly, deacetylation of sclerotiorin increased its cytotoxicity toward the tested cell lines over a period of 48 h.


Journal of Biomolecular Screening | 2015

Progesterone Receptor Chaperone Complex-Based High-Throughput Screening Assay: Identification of Capsaicin as an Inhibitor of the Hsp90 Machine

Chaitanya A. Patwardhan; Eyad Alfa; Su Lu; Ahmed Chadli

Hsp90 and its co-chaperones are known to be important for cancer cell survival. The N-terminal inhibitors of Hsp90 that are in ongoing clinical trials as antitumor agents have unfortunately shown disappointing efficacies in the clinic. Thus, novel inhibitors of the Hsp90 machine with a different mechanism of action are urgently needed. We report here the development of a novel high-throughput screening assay platform to identify small-molecule inhibitors of Hsp90 and its co-chaperones. This assay quantitatively measures the ability of Hsp90 and its co-chaperones to refold/protect the progesterone receptor, a physiological client of Hsp90, in a 96-well plate format. We screened the National Institutes of Health clinical collection drug library and identified capsaicin as a hit molecule. Capsaicin is a Food and Drug Administration–approved drug for topical use in pain management. Cell survival assays showed that capsaicin selectively kills cancer cells and destabilizes several Hsp90 client proteins. Thus, our data may explain the seemingly pleotropic effect of capsaicin.

Collaboration


Dive into the Ahmed Chadli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Su Lu

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

David Fulton

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Feng Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Stepp

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Hasan Korkaya

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge