Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed Elaswad is active.

Publication


Featured researches published by Ahmed Elaswad.


BMC Genomics | 2017

Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research

Hisham Abdelrahman; Mohamed ElHady; Acacia Alcivar-Warren; Standish K. Allen; Rafet Al-Tobasei; Lisui Bao; Ben Beck; Harvey D. Blackburn; Brian G. Bosworth; John Buchanan; Jesse A. Chappell; William H. Daniels; Sheng Dong; Rex A. Dunham; Evan Durland; Ahmed Elaswad; Marta Gomez-Chiarri; Kamal Gosh; Ximing Guo; Perry B. Hackett; Terry Hanson; Dennis Hedgecock; Tiffany Howard; Leigh Holland; Molly Jackson; Yulin Jin; Karim Khalil; Thomas Kocher; Tim Leeds; Ning Li

Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries. Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.


Scientific Reports | 2017

Generation of Myostatin Gene-Edited Channel Catfish ( Ictalurus punctatus ) via Zygote Injection of CRISPR/Cas9 System

Karim Khalil; Medhat Elayat; Elsayed Khalifa; Samer Mohamed Daghash; Ahmed Elaswad; Michael Miller; Hisham Abdelrahman; Zhi Ye; Ramjie Odin; David Drescher; Khoi Vo; Kamal Gosh; William Bugg; Dalton Robinson; Rex A. Dunham

The myostatin (MSTN) gene is important because of its role in regulation of skeletal muscle growth in all vertebrates. In this study, CRISPR/Cas9 was utilized to successfully target the channel catfish, Ictalurus punctatus, muscle suppressor gene MSTN. CRISPR/Cas9 induced high rates (88–100%) of mutagenesis in the target protein-encoding sites of MSTN. MSTN-edited fry had more muscle cells (p < 0.001) than controls, and the mean body weight of gene-edited fry increased by 29.7%. The nucleic acid alignment of the mutated sequences against the wild-type sequence revealed multiple insertions and deletions. These results demonstrate that CRISPR/Cas9 is a highly efficient tool for editing the channel catfish genome, and opens ways for facilitating channel catfish genetic enhancement and functional genomics. This approach may produce growth-enhanced channel catfish and increase productivity.


Journal of Visualized Experiments | 2018

Microinjection of CRISPR/Cas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing

Ahmed Elaswad; Karim Khalil; David Cline; Patrick S. Page-McCaw; Wenbiao Chen; Maximilian Michel; Roger D. Cone; Rex A. Dunham

The complete genome of the channel catfish, Ictalurus punctatus, has been sequenced, leading to greater opportunities for studying channel catfish gene function. Gene knockout has been used to study these gene functions in vivo. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a powerful tool used to edit genomic DNA sequences to alter gene function. While the traditional approach has been to introduce CRISPR/Cas9 mRNA into the single cell embryos through microinjection, this can be a slow and inefficient process in catfish. Here, a detailed protocol for microinjection of channel catfish embryos with CRISPR/Cas9 protein is described. Briefly, eggs and sperm were collected and then artificial fertilization performed. Fertilized eggs were transferred to a Petri dish containing Holtfreters solution. Injection volume was calibrated and then guide RNAs/Cas9 targeting the toll/interleukin 1 receptor domain-containing adapter molecule (TICAM 1) gene and rhamnose binding lectin (RBL) gene were microinjected into the yolk of one-cell embryos. The gene knockout was successful as indels were confirmed by DNA sequencing. The predicted protein sequence alterations due to these mutations included frameshift and truncated protein due to premature stop codons.


Annual Review of Animal Biosciences | 2018

Catfish Biology and Farming

Rex A. Dunham; Ahmed Elaswad

This article summarizes the biology and culture of ictalurid catfish, an important commercial, aquaculture, and sport fish family in the United States. The history of the propagation as well as spawning of common catfish species in this family is reviewed, with special emphasis on channel catfish and its hybridization with blue catfish. The importance of the channel catfish female×blue catfish male hybrid, including current and future methods of hybrid catfish production, and the potential role it plays in the recovery of the US catfish industry are discussed. Recent advances in catfish culture elements, including environment, management, nutrition, feeding, disease control, culture systems, genetic improvement programs, transgenics, and the application of genome-based approaches in catfish production and welfare, are reviewed. The current status, needs, and future projections are discussed, as well as genetically modified organism developments that are changing the future.


Archive | 2018

Gene Editing in Channel Catfish via Double Electroporation of Zinc-Finger Nucleases

Rex A. Dunham; Ahmed Elaswad; Zhenkui Qin

The traditional approach for gene editing with zinc-finger nucleases (ZFNs) in fish has been microinjection of mRNA. Here, we develop and describe an alternative protocol in which ZFN plasmids are electroporated to channel catfish, Ictalurus punctatus, sperm, and embryos. Briefly, plasmids were propagated to supply a sufficient quantity for electroporation. Sperm cells were prepared in saline solution, electroporated with plasmids, and then used for fertilization. Embryos were incubated with the plasmids before performing electroporation just prior to first cell division. Plasmids were then transcribed and translated by embryonic cells to produce ZFNs for gene editing, resulting in mutated fry.


Molecular Genetics and Genomics | 2017

A deletion in the Hermansky–Pudlak syndrome 4 (Hps4) gene appears to be responsible for albinism in channel catfish

Yueru Li; Xin Geng; Lisui Bao; Ahmed Elaswad; Kevin W. Huggins; Rex A. Dunham; Zhanjiang Liu


Reviews in Aquaculture | 2017

Disease reduction in aquaculture with genetic and genomic technology: current and future approaches

Ahmed Elaswad; Rex A. Dunham


Aquaculture | 2017

Channel catfish Ictalurus punctatus strain comparison for induced ovulation in the early spawning season to produce channel catfish ♀ × blue catfish I. furcatus ♂ hybrid catfish embryos

Sheng Dong; Dayan A. Perera; Khoi Vo; Ramjie Odin; Ahmed Alsaquifi; Michael Fobes; Ahmed Elaswad; Zhi Ye; Zhenkui Qin; Hanbo Li; Dan Zhang; Guyu Qin; David Drescher; Nermeen Abass; Louie Thompson; Rex A. Dunham


Marine Biotechnology | 2018

Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus, by Knockdown of Primordial Germ Cell Genes with Copper-Sensitive Constructs

Hanbo Li; Baofeng Su; Guyu Qin; Zhi Ye; Ahmed Elaswad; Ahmed Alsaqufi; Dayan A. Perera; Zhenkui Qin; Ramji Odin; Khoi Vo; David Drescher; Dalton Robinson; Sheng Dong; Dan Zhang; Mei Shang; Nermeen Abass; Sanjay K. Das; Max R. Bangs; Rex A. Dunham


BMC Genomics | 2017

Erratum to: Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research. [BMC Genomics. 18, (2017), (191)] DOI: 10.1186/s12864-017-3557-1

Hisham Abdelrahman; Mohamed ElHady; Acacia Alcivar-Warren; Standish K. Allen; Rafet Al-Tobasei; Lisui Bao; Ben Beck; Harvey D. Blackburn; Brian G. Bosworth; John Buchanan; Jesse A. Chappell; William H. Daniels; Sheng Dong; Rex A. Dunham; Evan Durland; Ahmed Elaswad; Marta Gomez-Chiarri; Kamal Gosh; Ximing Guo; Perry B. Hackett; Terry Hanson; Dennis Hedgecock; Tiffany Howard; Leigh Holland; Molly Jackson; Yulin Jin; Karim Khalil; Thomas Kocher; Tim Leeds; Ning Li

Collaboration


Dive into the Ahmed Elaswad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge