Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed Haouz is active.

Publication


Featured researches published by Ahmed Haouz.


Nature | 2016

Structural basis of potent Zika–dengue virus antibody cross-neutralization

Giovanna Barba-Spaeth; Wanwisa Dejnirattisai; Alexander Rouvinski; Marie-Christine Vaney; Iris Medits; Arvind Sharma; Etienne Simon-Loriere; Anavaj Sakuntabhai; Van-Mai Cao-Lormeau; Ahmed Haouz; Patrick England; Karin Stiasny; Juthathip Mongkolsapaya; Franz X. Heinz; Gavin R. Screaton; Félix A. Rey

Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain–Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections.Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections.


Nature Structural & Molecular Biology | 2002

The Crystal Structure of the Mouse Apoptosis-Inducing Factor Aif

María J. Maté; Miguel Ortiz-Lombardía; Brigitte Boitel; Ahmed Haouz; Diana Tello; Santos A. Susin; Josef M. Penninger; Guido Kroemer; Pedro M. Alzari

Mitochondria play a key role in apoptosis due to their capacity to release potentially lethal proteins. One of these latent death factors is cytochrome c, which can stimulate the proteolytic activation of caspase zymogens. Another important protein is apoptosis-inducing factor (AIF), a flavoprotein that can stimulate a caspase-independent cell-death pathway required for early embryonic morphogenesis. Here, we report the crystal structure of mouse AIF at 2.0 Å. Its active site structure and redox properties suggest that AIF functions as an electron transferase with a mechanism similar to that of the bacterial ferredoxin reductases, its closest evolutionary homologs. However, AIF structurally differs from these proteins in some essential features, including a long insertion in a C-terminal β-hairpin loop, which may be related to its apoptogenic functions.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation

Ludovic Sauguet; Azadeh Shahsavar; Frédéric Poitevin; Christèle Huon; Anaïs Menny; Ákos Nemecz; Ahmed Haouz; Jean-Pierre Changeux; Pierre-Jean Corringer; Marc Delarue

Significance We describe the X-ray structures of the same pentameric ligand-gated ion channel (pLGIC) in both its liganded or ligand-free conformations. This provides the molecular basis for understanding the opening and closing (gating mechanism) of these key players in the fast transmission of chemical signals at synapses. As described with classical allosteric proteins, the tertiary changes of the subunits are linked together through the quaternary constraint by a marked reorganization of the interfaces between subunits and the associated binding pockets and cavities. The closed form displays a cavity that may allow a better understanding of the mechanism of action of pharmacological effectors of pentameric ligand-gated ion channels and the rational design of new modulators. Pentameric ligand-gated ion channels mediate fast chemical transmission of nerve signals. The structure of a bacterial proton-gated homolog has been established in its open and locally closed conformations at acidic pH. Here we report its crystal structure at neutral pH, thereby providing the X-ray structures of the two end-points of the gating mechanism in the same pentameric ligand-gated ion channel. The large structural variability in the neutral pH structure observed in the four copies of the pentamer present in the asymmetric unit has been used to analyze the intrinsic fluctuations in this state, which are found to prefigure the transition to the open state. In the extracellular domain (ECD), a marked quaternary change is observed, involving both a twist and a blooming motion, and the pore in the transmembrane domain (TMD) is closed by an upper bend of helix M2 (as in locally closed form) and a kink of helix M1, both helices no longer interacting across adjacent subunits. On the tertiary level, detachment of inner and outer β sheets in the ECD reshapes two essential cavities at the ECD–ECD and ECD–TMD interfaces. The first one is the ligand-binding cavity; the other is close to a known divalent cation binding site in other pentameric ligand-gated ion channels. In addition, a different crystal form reveals that the locally closed and open conformations coexist as discrete ones at acidic pH. These structural results, together with site-directed mutagenesis, physiological recordings, and coarse-grained modeling, have been integrated to propose a model of the gating transition pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structural plasticity and catalysis regulation of a thermosensor histidine kinase

Daniela Albanesi; Mariana Martín; Felipe Trajtenberg; María C. Mansilla; Ahmed Haouz; Pedro M. Alzari; Diego de Mendoza; Alejandro Buschiazzo

Temperature sensing is essential for the survival of living cells. A major challenge is to understand how a biological thermometer processes thermal information to optimize cellular functions. Using structural and biochemical approaches, we show that the thermosensitive histidine kinase, DesK, from Bacillus subtilis is cold-activated through specific interhelical rearrangements in its central four-helix bundle domain. As revealed by the crystal structures of DesK in different functional states, the plasticity of this helical domain influences the catalytic activities of the protein, either by modifying the mobility of the ATP-binding domains for autokinase activity or by modulating binding of the cognate response regulator to sustain the phosphotransferase and phosphatase activities. The structural and biochemical data suggest a model in which the transmembrane sensor domain of DesK promotes these structural changes through conformational signals transmitted by the membrane-connecting two-helical coiled-coil, ultimately controlling the alternation between output autokinase and phosphatase activities. The structural comparison of the different DesK variants indicates that incoming signals can take the form of helix rotations and asymmetric helical bends similar to those reported for other sensing systems, suggesting that a similar switching mechanism could be operational in a wide range of sensor histidine kinases.


Journal of Biological Chemistry | 2003

Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism.

Ahmed Haouz; Veerle Vanheusden; Hélène Munier-Lehmann; Mattheus Froeyen; Piet Herdewijn; Serge Van Calenbergh; Marc Delarue

The chemical synthesis of new compounds designed as inhibitors of Mycobacterium tuberculosis TMP kinase (TMPK) is reported. The synthesis concerns TMP analogues modified at the 5-position of the thymine ring as well as a novel compound with a six-membered sugar ring. The binding properties of the analogues are compared with the known inhibitor azido-TMP, which is postulated here to work by excluding the TMP-bound Mg2+ ion. The crystallographic structure of the complex of one of the compounds, 5-CH2OH-dUMP, with TMPK has been determined at 2.0 Å. It reveals a major conformation for the hydroxyl group in contact with a water molecule and a minor conformation pointing toward Ser99. Looking for a role for Ser99, we have identified an unusual catalytic triad, or a proton wire, made of strictly conserved residues (including Glu6, Ser99, Arg95, and Asp9) that probably serves to protonate the transferred PO3 group. The crystallographic structure of the commercially available bisubstrate analogueP 1-(adenosine-5′)-P 5-(thymidine-5′)-pentaphosphate bound to TMPK is also reported at 2.45 Å and reveals an alternative binding pocket for the adenine moiety of the molecule compared with what is observed either in the Escherichia coli or in the yeast enzyme structures. This alternative binding pocket opens a way for the design of a new family of specific inhibitors.


Acta Crystallographica Section D-biological Crystallography | 2006

Implementation of semi-automated cloning and prokaryotic expression screening: the impact of SPINE

Pedro M. Alzari; H. Berglund; Nick S. Berrow; Elena Blagova; Didier Busso; Christian Cambillau; Valérie Campanacci; Evangelos Christodoulou; S. Eiler; Mark J. Fogg; Gert E. Folkers; Arie Geerlof; Darren J. Hart; Ahmed Haouz; Maria Dolores Herman; S. Macieira; Pär Nordlund; Anastassis Perrakis; Sophie Quevillon-Cheruel; F. Tarandeau; H. van Tilbeurgh; Tamar Unger; Mark P.A. Luna-Vargas; M. Velarde; M. Willmanns; Raymond J. Owens

The implementation of high-throughput (HTP) cloning and expression screening in Escherichia coli by 14 laboratories in the Structural Proteomics In Europe (SPINE) consortium is described. Cloning efficiencies of greater than 80% have been achieved for the three non-ligation-based cloning techniques used, namely Gateway, ligation-indendent cloning of PCR products (LIC-PCR) and In-Fusion, with LIC-PCR emerging as the most cost-effective. On average, two constructs have been made for each of the approximately 1700 protein targets selected by SPINE for protein production. Overall, HTP expression screening in E. coli has yielded 32% soluble constructs, with at least one for 70% of the targets. In addition to the implementation of HTP cloning and expression screening, the development of two novel technologies is described, namely library-based screening for soluble constructs and parallel small-scale high-density fermentation.


Molecular Microbiology | 2009

Genome-wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis

Claudia Sala; Ahmed Haouz; Frederick A. Saul; Isabelle Miras; Ida Rosenkrands; Pedro M. Alzari; Stewart T. Cole

Comparative genomics with Staphylococcus aureus suggested the existence of a regulatory system governing beta‐lactamase (BlaC) production in Mycobacterium tuberculosis. The crystal structure of Rv1846c, a winged helix regulator of previously unknown function, was solved thus revealing strong similarity to the BlaI and MecI repressors of S. aureus, which both respond to beta‐lactam treatment. Using chromatin immunoprecipitation and hybridization to microarrays (ChIP‐on‐chip), the Rv1846c regulon was shown to comprise five separate genomic loci. Two of these mediate responses and resistance to beta‐lactam antibiotics (rv1845c, rv1846c–rv1847; blaC–sigC); two encode membrane proteins of unknown function (rv1456c, rv3921c) while the last codes for ATP synthase (rv1303–atpBEFHAGDC–rv1312). The ChIP‐on‐chip findings were confirmed independently using electrophoretic mobility shift assays, DNAse footprinting and transcript analysis leading to Rv1846c being renamed BlaI. When cells were treated with beta‐lactams, BlaI was released from its operator sites causing derepression of the regulon and upregulation of ATP synthase transcription. The existence of a potential regulatory loop between cell wall integrity and ATP production was previously unknown.


Molecular Microbiology | 2010

Biological and Structural Characterization of the Mycobacterium Smegmatis Nitroreductase Nfnb, and its Role in Benzothiazinone Resistance

Giulia Manina; Marco Bellinzoni; Maria Rosalia Pasca; João Neres; Anna Milano; Ana Luisa de Jesus Lopes Ribeiro; Silvia Buroni; Henrieta Škovierová; Petronela Dianišková; Katarína Mikušová; Jozef Marák; Vadim Makarov; David Giganti; Ahmed Haouz; Anna Paola Lucarelli; Giulia Degiacomi; Aurora Piazza; Laurent R. Chiarelli; Edda De Rossi; Elena G. Salina; Stewart T. Cole; Pedro M. Alzari; Giovanna Riccardi

Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl‐β‐d‐ribose 2′‐epimerase complex, have been reported recently. Here, we describe the identification and characterization of a novel resistance mechanism to BTZ in Mycobacterium smegmatis. The overexpression of the nitroreductase NfnB leads to the inactivation of the drug by reduction of a critical nitro‐group to an amino‐group. The direct involvement of NfnB in the inactivation of the lead compound BTZ043 was demonstrated by enzymology, microbiological assays and gene knockout experiments. We also report the crystal structure of NfnB in complex with the essential cofactor flavin mononucleotide, and show that a common amino acid stretch between NfnB and DprE1 is likely to be essential for the interaction with BTZ. We performed docking analysis of NfnB‐BTZ in order to understand their interaction and the mechanism of nitroreduction. Although Mycobacterium tuberculosis seems to lack nitroreductases able to inactivate these drugs, our findings are valuable for the design of new BTZ molecules, which may be more effective in vivo.


Acta Crystallographica Section D-biological Crystallography | 2006

The impact of protein characterization in structural proteomics

Arie Geerlof; James Brown; Bruno Coutard; M.-P. Egloff; Francisco J. Enguita; Mark J. Fogg; Robert J. C. Gilbert; Matthew R. Groves; Ahmed Haouz; Joanne E. Nettleship; Pär Nordlund; Raymond J. Owens; M Ruff; Sarah Sainsbury; Dmitri I. Svergun; Matthias Wilmanns

Protein characterization plays a role in two key aspects of structural proteomics. The first is the quality assessment of the produced protein preparations. Obtaining well diffracting crystals is one of the major bottlenecks in the structure‐determination pipeline. Often, this is caused by the poor quality of the protein preparation used for crystallization trials. Hence, it is essential to perform an extensive quality assessment of the protein preparations prior to crystallization and to use the results in the evaluation of the process. Here, a protein‐production and crystallization strategy is proposed with threshold values for protein purity (95%) and monodispersity (85%) below which a further optimization of the protein‐production process is strongly recommended. The second aspect is the determination of protein characteristics such as domains, oligomeric state, post‐translational modifications and protein–protein and protein–ligand interactions. In this paper, applications and new developments of protein‐characterization methods using MS, fluorescence spectroscopy, static light scattering, analytical ultracentrifugation and small‐angle X‐ray scattering within the EC Structural Proteomics in Europe contract are described. Examples of the application of the various methods are given.


Journal of Molecular Biology | 2010

Crystal Structure of the Extracellular Domain of a Bacterial Ligand-Gated Ion Channel

Hugues Nury; Nicolas Bocquet; Chantal Le Poupon; Bertrand Raynal; Ahmed Haouz; Pierre-Jean Corringer; Marc Delarue

The crystal structure of the extracellular domain (ECD) of the pentameric ligand-gated ion-channel from Gloeobacter violaceus (GLIC) was solved at neutral pH at 2.3 A resolution in two crystal forms, showing a surprising hexameric quaternary structure with a 6-fold axis replacing the expected 5-fold axis. While each subunit retains the usual beta-sandwich immunoglobulin-like fold, small deviations from the whole GLIC structure indicate zones of differential flexibility. The changes in interface between two adjacent subunits in the pentamer and the hexamer can be described in a downward translation by one inter-strand distance and a global rotation of the second subunit, using the first one for superposition. While global characteristics of the interface, such as the buried accessible surface area, do not change very much, most of the atom-atom interactions are rearranged. It thus appears that the transmembrane domain is necessary for the proper oligomeric assembly of GLIC and that there is an intrinsic plasticity or polymorphism in possible subunit-subunit interfaces at the ECD level, the latter behaving as a monomer in solution. Possible functional implications of these novel structural data are discussed in the context of the allosteric transition of this family of proteins. In addition, we propose a novel way to quantify elastic energy stored in the interface between subunits, which indicates a tenser interface for the open form than for the closed form (rest state). The hexameric or pentameric forms of the ECD have a similar negative curvature in their subunit-subunit interface, while acetylcholine binding proteins have a smaller and positive curvature that increases from the apo to the holo form.

Collaboration


Dive into the Ahmed Haouz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge