Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed R. El-Awady is active.

Publication


Featured researches published by Ahmed R. El-Awady.


Journal of Periodontology | 2010

Periodontal ligament fibroblasts sustain destructive immune modulators of chronic periodontitis.

Ahmed R. El-Awady; Regina L. W. Messer; Ahmed Y. Gamal; Mohamed Sharawy; Karl H. Wenger; Carol A. Lapp

BACKGROUND In healthy periodontal tissue, innate immune responses effectively confine and suppress a bacterial insult. However, a disruption of the host-bacterial equilibrium may produce an overexpression of cytokines and lead to permanent, host-mediated tissue damage. Although such periodontal destruction primarily results from activated immune mechanisms, the site-specific damage suggests that local tissues participate in these pathologic changes. Periodontal ligament fibroblasts (PDLFs) are prominent in the periodontium and are critical in homeostasis and regeneration because they have the ability to produce multiple cytokines in response to a bacterial insult. These cells could play a role in the local pathogenesis of periodontal disease. METHODS We studied alkaline phosphatase (ALP) activity, interleukin (IL)-6 production, and morphologic characteristics of cultured PDLFs that were isolated from periodontally healthy sites (H-PDLFs) and diseased sites (D-PDLFs) in humans. Quantitative analyses of 84 genes that are related to inflammation were performed using real-time polymerase chain reaction arrays. RESULTS A mineralizing medium induced a significant increase of ALP in H-PDLFs, but no significant enzymatic changes were detected in D-PDLFs after such treatment. The protein and gene expression of IL6 showed a significant upregulation in D-PDLFs, which also demonstrated a significant upregulation of 54% of genes in the inflammatory gene arrays. CONCLUSIONS To our knowledge, these results represent the first biologic evidence that D-PDLFs retain uniquely inflammatory phenotypes that could maintain localized destructive signals in periodontitis. The overexpression of proinflammatory cytokines by PDLFs could amplify local inflammation by the continuous triggering of immune responses. In addition, the location of these cells could be critical in the progression of the inflammatory front into the deeper tissues.


Journal of Endodontics | 2010

In vitro osteogenic potential of an experimental calcium silicate-based root canal sealer.

Thomas E. Bryan; Khaled Khechen; Martha Goël Brackett; Regina L. W. Messer; Ahmed R. El-Awady; Carolyn M. Primus; James L. Gutmann; Franklin R. Tay

OBJECTIVE This in vitro study compared the cytotoxicity and osteogenic potential of an experimental calcium silicate-based sealer with an epoxy resin-based sealer (AH Plus; Dentsply Caulk, Milford, DE) and a zinc oxide-eugenol-based sealer (Pulp Canal Sealer; SybronEndo, Orange, CA). METHODS Disks prepared from the respective sealer and from Teflon (negative control) were placed in direct contact with a MC3T3-E1 osteogenic cell line at 6 weekly intervals after immersion in a culture medium. Succinic dehydrogenase activities were evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extracts from these sealers after the 6-week immersion period were investigated also by MTT assay. Aged sealers were then switched to an osteogenic medium for examination of the alkaline phosphatase activity and mineralization of extracellular matrices produced by the differentiated cells. RESULTS All sealers exhibited severe toxicity after 24 hours, after which toxicity decreased gradually over the experimental period except for Pulp Canal Sealer, which remained severely toxic. Toxicity of the extracts derived from the sealers was concentration dependent, with those derived from the experimental sealer being the least cytotoxic at a 1:10 dilution. Minimal alkaline phosphatase activity and no bone formation were seen with Pulp Canal Sealer. The production of alkaline phosphatase was less intense for the experimental sealer at 7 days. However, both AH Plus and the experimental sealer did not inhibit mineralization of the extracellular matrix after 28 days. CONCLUSION The experimental calcium silicate-based sealer may be regarded as minimally tissue irritating and does not interfere with bone regeneration even when it is inadvertently extruded through the apical constriction.


Dental Materials | 2015

Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization

Eduardo Antunes Bortoluzzi; Li Na Niu; Chithra D. Palani; Ahmed R. El-Awady; Barry D. Hammond; Dan Dan Pei; Fu cong Tian; Christopher W. Cutler; David H. Pashley; Franklin R. Tay

OBJECTIVES In pulpal revascularization, a protective material is placed coronal to the blood clot to prevent recontamination and to facilitate osteogenic differentiation of mesenchymal stem cells to produce new dental tissues. Although mineral trioxide aggregate (MTA) has been the material of choice for clot protection, it is easily displaced into the clot during condensation. The present study evaluated the effects of recently introduced calcium silicate cements (Biodentine and TheraCal LC) on the viability and osteogenic differentiation of human dental pulp stem cells (hDPSCs) by comparing with MTA Angelus. METHODS Cell viability was assessed using XTT assay and flow cytometry. The osteogenic potential of hDPSCs exposed to calcium silicate cements was examined using qRT-PCR for osteogenic gene expressions, alkaline phosphatase enzyme activity, Alizarin red S staining and transmission electron microscopy of extracellular calcium deposits. Parametric statistical methods were employed for analyses of significant difference among groups, with α=0.05. RESULTS The cytotoxic effects of Biodentine and TheraCal LC on hDPSCs were time- and concentration-dependent. Osteogenic differentiation of hDPSCs was enhanced after exposure to Biodentine that was depleted of its cytotoxic components. This effect was less readily observed in hDPSCs exposed to TheraCal LC, although both cements supported extracellular mineralization better than the positive control (zinc oxide-eugenol-based cement). SIGNIFICANCE A favorable tissue response is anticipated to occur with the use of Biodentine as a blood clot-protecting material for pulpal revascularization. Further investigations with the use of in vivo animal models are required to validate the potential adverse biological effects of TheraCal LC on hDPSCs.


PLOS Pathogens | 2015

Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk.

Ahmed R. El-Awady; Brodie Miles; Elizabeth Scisci; Zoya Kurago; Chithra D. Palani; Roger Arce; Jennifer L. Waller; Caroline Attardo Genco; Connie Slocum; Matthew Manning; Christopher W. Cutler

Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.


Archives of Oral Biology | 2012

Recombinant bone morphogenetic protein-2 induces up-regulation of vascular endothelial growth factor and interleukin 6 in human pre-osteoblasts: Role of reactive oxygen species

Sara Akeel; Ahmed R. El-Awady; Khaled A. Hussein; Mona El-Refaey; Mohammed E. Elsalanty; Mohamed Sharawy; Mohamed Al-Shabrawey

OBJECTIVE Bone morphogenetic proteins (BMPs) and vascular endothelial growth factor (VEGF) have been reported in many studies to play a major role in the communication between endothelial cells and osteoblasts. The inflammatory reaction and relative hypoxia at the site of bone injury are the first stages of the fracture repair. rhBMP-2 has been used extensively in spinal fusion and reconstruction of maxillofacial bone defects with main complication is the formation of seroma. The aim of this study was to test whether rhBMP-2 regulates the expression of the angiogenic and inflammatory mediators in pre-osteoblasts via generating reactive oxygen species (ROS). METHODS rhBMP-2 effect on angiogenesis and inflammatory genes was assessed using normal human osteoblasts (NHOst). Angiogenesis genes were measured using angiogenic PCR array. VEGF and IL6 production were analysed using ELISA kit and real-time PCR. ROS production was assessed using dihydroethidine and dichlorofluorescein staining and lipid peroxidation. HIF-1α immunoreactivity was performed using immunofluorescence staining. RESULTS There was an increase in the pro-angiogenic and -inflammatory genes as well as VEGF and IL6 protein expression in NHOst by rhBMP-2. This increase in VEGF and IL6 was blocked by the ROS scavenger N-acetyl cysteine (NAC). CONCLUSION The regulatory effect of rhBMP-2 on angiogenesis and inflammation is mediated through a ROS-dependent mechanism, which involves upregulation of crucial angiogenic and inflammatory mediators such as VEGF and IL6. These findings highlight the need for future studies to identify new therapeutic targets downstream from rhBMP-2 to potentiate its beneficial effect or limit its complications such as seroma formation.


Journal of Dentistry | 2015

Efficacy of 3D conforming nickel titanium rotary instruments in eliminating canal wall bacteria from oval-shaped root canals

Eduardo Antunes Bortoluzzi; Daniel Carlon; Mohamed M. Meghil; Ahmed R. El-Awady; Lina Niu; Brian E. Bergeron; Lisiane F. Susin; Christopher W. Cutler; David H. Pashley; Franklin R. Tay

OBJECTIVES To evaluate the effectiveness of TRUShape® 3D Conforming Files, compared with Twisted Files, in reducing bacteria load from root canal walls, in the presence or absence of irrigant agitation. METHODS Extracted human premolars with single oval-shaped canals were infected with Enterococcus faecalis. Teeth in Group I (N=10; NaOCl and QMix® 2in1 as respective initial and final irrigants) were subdivided into 4 subgroups: (A) TRUShape® instrumentation without irrigant activation; (B) TRUShape® instrumentation with sonic irrigant agitation; (C) Twisted Files without irrigant agitation; (D) Twisted Files with sonic irrigant agitation. To remove confounding factor (antimicrobial irrigants), teeth in Group II (N=10) were irrigated with sterile saline, using the same subgroup designations. Specimens before and after chemomechanical débridement were cultured for quantification of colony-forming units (CFUs). Data from each group were analyzed separately using two-factor ANOVA and Holm-Sidak multiple comparison (α=0.05). Canal wall bacteria were qualitatively examined using scanning electron microscopy (SEM) and light microscopy of Taylor-modified Brown and Brenn-stained demineralised sections. RESULTS CFUs from subgroups in Group I were not significantly different (P=0.935). For Group II, both file type (P<0.001) and irrigant agitation (P<0.001) significantly affected log-reduction in CFU concentrations. The interaction of these two factors was not significant (P=0.601). Although SEM showed reduced canal wall bacteria, bacteria were present within dentinal tubules after rotary instrumentation, as revealed by light microscopy of longitudinal root sections. CONCLUSIONS TRUShape® files removed significantly more canal wall bacteria than Twisted Files when used without an antibacterial irrigant; the latter is required to decontaminate dentinal tubules. CLINICAL SIGNIFICANCE Root canal disinfection should not be focused only on a mechanistic approach. Rather, the rational choice of a rotary instrumentation system should be combined with the use of well-tested antimicrobial irrigants and delivery/agitation techniques to establish a clinically realistic chemomechanical débridement protocol.


Periodontology 2000 | 2015

Dendritic cells: microbial clearance via autophagy and potential immunobiological consequences for periodontal disease

Ahmed R. El-Awady; Roger Arce; Christopher W. Cutler

Abstract Dendritic cells are potent antigen‐capture and antigen‐presenting cells that play a key role in the initiation and regulation of the adaptive immune response. This process of immune homeostasis, as maintained by dendritic cells, is susceptible to dysregulation by certain pathogens during chronic infections. Such dysregulation may lead to disease perpetuation with potentially severe systemic consequences. Here we discuss in detail how intracellular pathogens exploit dendritic cells and escape degradation by altering or evading autophagy. This novel mechanism explains, in part, the chronic, persistent nature observed in several immuno‐inflammatory diseases, including periodontal disease. We also propose a hypothetical model of the plausible role of autophagy in the context of periodontal disease. Promotion of autophagy may open new therapeutic strategies in the search of a ‘cure’ for periodontal disease in humans.


Journal of Periodontology | 2015

Novel Coating of Surgical Suture Confers Antimicrobial Activity Against Porphyromonas gingivalis and Enterococcus faecalis

Mohamed M. Meghil; Frederick Rueggeberg; Ahmed R. El-Awady; Brodie Miles; Franklin R. Tay; David H. Pashley; Christopher W. Cutler

BACKGROUND The oral cavity is colonized by >10(9) bacteria, many of which can increase heart disease risk when seeded into the bloodstream. Most dentoalveolar surgeries require the use of surgical sutures. Suture placement and removal can increase the risk of postoperative infection and bacteremia. The aim of this study is to evaluate the antimicrobial activity of a novel quaternary ammonium compound, K21, when coated on different suture materials. METHODS The periodontal pathogen Porphyromonas gingivalis and the endodontic species Enterococcus faecalis were grown to early log phase and inoculated on enriched Brucella blood agar, on which were placed identical lengths of surgical suture (chromic gut, polyester suture, silk, and nylon suture) and control unwaxed dental floss impregnated with K21 at 5%, 10%, 20%, and 25% volume/volume in ethanol vehicle. Controls included the following: 1) sutures treated with vehicle; 2) untreated sutures; and 3) unwaxed floss. Zones of inhibition in millimeters were measured at five randomized sites per suture/floss for each concentration and material used. Mean ± SD of zones of inhibition were calculated, and analysis of variance (P <0.05) was used to determine whether differences were statistically significant. RESULTS The results indicate that K21-coated suture at concentrations ranging from 5% to 25%, depending on the type of suture, have antimicrobial activity for P. gingivalis and E. faecalis. Nylon suture coated with K21 at 5%, 10%, 20%, and 25% resulted in zones ranging from 3 to 11 mm. Polyester suture was more effective at lower K21 concentrations with 5% (P = 0.0031), 10% (P = 0.0011), and 20% (P = 0.0002), yielding 7.5, 8.3, and 10.5 mm zones of inhibition. K21-coated silk suture yielded significant zones of inhibition at 25% (P <0.0001), whereas chromic gut was effective at K21 concentrations of 5% (P = 0.0081) and 25% (P <0.0001). CONCLUSION It is concluded that K21-coated surgical sutures have antimicrobial activity for bacterial species of direct relevance to postoperative infection and bacteremia.


Journal of Applied Physiology | 2011

Pneumatic pressure bioreactor for cyclic hydrostatic stress application: mechanobiology effects on periodontal ligament cells

Karl H. Wenger; Ahmed R. El-Awady; Regina L. W. Messer; Mohamed Sharawy; Greg White; Carol A. Lapp

A bioreactor system was developed to provide high-amplitude cyclic hydrostatic compressive stress (cHSC) using compressed air mixed commercially as needed to create partial pressures of oxygen and carbon dioxide appropriate for the cells under investigation. Operating pressures as high as 300 psi are achievable in this system at cyclic speeds of up to 0.2 Hz. In this study, ligamentous fibroblasts from human periodontal ligaments (n = 6) were compressed on two consecutive days at 150 psi for 3 h each day, and the mRNA for families of extracellular matrix protein and protease isoforms was evaluated by real-time PCR array. Several integrins were significantly upregulated, most notably alpha-3 (6.4-fold), as was SPG7 (12.1-fold). Among the collagens, Col8a1 was highly upregulated at 53.5-fold, with Col6a1, Col6a2, and Col7a1 also significantly upregulated 4.4- to 8.5-fold. MMP-1 was the most affected at 122.9-fold upregulation. MMP-14 likewise increased 17.8-fold with slight reductions for the gelatinases and a significant increase of TIMP-2 at 5.8-fold. The development of this bioreactor system and its utility in characterizing periodontal ligament fibroblast mechanobiology in intermediate-term testing hold promise for better simulating the conditions of the musculoskeletal system and the large cyclic compressive stresses joints may experience in gait, exertion, and mastication.


Molecular Oral Microbiology | 2016

High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants

P. Arjunan; Ahmed R. El-Awady; R. O. Dannebaum; G. Kunde-Ramamoorthy; Christopher W. Cutler

The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.

Collaboration


Dive into the Ahmed R. El-Awady's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed Sharawy

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Franklin R. Tay

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brodie Miles

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Carol A. Lapp

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

David H. Pashley

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Ibrahim Zakhary

University of Detroit Mercy

View shared research outputs
Top Co-Authors

Avatar

Karl H. Wenger

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge