Ahmet Iscen
French Institute for Research in Computer Science and Automation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ahmet Iscen.
computer vision and pattern recognition | 2017
Ahmet Iscen; Giorgos Tolias; Yannis S. Avrithis; Teddy Furon; Ondrej Chum
Query expansion is a popular method to improve the quality of image retrieval with both conventional and CNN representations. It has been so far limited to global image similarity. This work focuses on diffusion, a mechanism that captures the image manifold in the feature space. An efficient off-line stage allows optional reduction in the number of stored regions. In the on-line stage, the proposed handling of unseen queries in the indexing stage removes additional computation to adjust the precomputed data. We perform diffusion through a sparse linear system solver, yielding practical query times well below one second. Experimentally, we observe a significant boost in performance of image retrieval with compact CNN descriptors on standard benchmarks, especially when the query object covers only a small part of the image. Small objects have been a common failure case of CNN-based retrieval.
IEEE Transactions on Big Data | 2018
Ahmet Iscen; Teddy Furon; Vincent Gripon; Michael G. Rabbat; Hervé Jégou
We study an indexing architecture to store and search in a database of high-dimensional vectors from the perspective of statistical signal processing and decision theory. This architecture is composed of several memory units, each of which summarizes a fraction of the database by a single representative vector. The potential similarity of the query to one of the vectors stored in the memory unit is gauged by a simple correlation with the memory units representative vector. This representative optimizes the test of the following hypothesis: the query is independent from any vector in the memory unit versus the query is a simple perturbation of one of the stored vectors. Compared to exhaustive search, our approach finds the most similar database vectors significantly faster without a noticeable reduction in search quality. Interestingly, the reduction of complexity is provably better in high-dimensional spaces. We empirically demonstrate its practical interest in a large-scale image search scenario with off-the-shelf state-of-the-art descriptors.
IEEE Transactions on Image Processing | 2015
Ahmet Iscen; Giorgos Tolias; Philippe Henri Gosselin; Hervé Jégou
We consider a pipeline for image classification or search based on coding approaches like bag of words or Fisher vectors. In this context, the most common approach is to extract the image patches regularly in a dense manner on several scales. This paper proposes and evaluates alternative choices to extract patches densely. Beyond simple strategies derived from regular interest region detectors, we propose approaches based on superpixels, edges, and a bank of Zernike filters used as detectors. The different approaches are evaluated on recent image retrieval and fine-grained classification benchmarks. Our results show that the regular dense detector is outperformed by other methods in most situations, leading us to improve the state-of-the-art in comparable setups on standard retrieval and fined-grained benchmarks. As a byproduct of our study, we show that existing methods for blob and superpixel extraction achieve high accuracy if the patches are extracted along the edges and not around the detected regions.
computer vision and pattern recognition | 2016
Ahmet Iscen; Michael G. Rabbat; Teddy Furon
We consider the image retrieval problem of finding the images in a dataset that are most similar to a query image. Our goal is to reduce the number of vector operations and memory for performing a search without sacrificing accuracy of the returned images. We adopt a group testing formulation and design the decoding architecture using either dictionary learning or eigendecomposition. The latter is a plausible option for small-to-medium sized problems with high-dimensional global image descriptors, whereas dictionary learning is applicable in large-scale scenarios. We evaluate our approach for global descriptors obtained from both SIFT and CNN features. Experiments with standard image search benchmarks, including the Yahoo100M dataset comprising 100 million images, show that our method gives comparable (and sometimes superior) accuracy compared to exhaustive search while requiring only 10% of the vector operations and memory. Moreover, for the same search complexity, our method gives significantly better accuracy compared to approaches based on dimensionality reduction or locality sensitive hashing.
international conference on multimedia retrieval | 2016
Ahmet Iscen; Laurent Amsaleg; Teddy Furon
The large dimensionality of modern image feature vectors, up to thousands of dimensions, is challenging the high dimensional indexing techniques. Traditional approaches fail at returning good quality results within a response time that is usable in practice. However, similarity search techniques inspired by the group testing framework have recently been proposed in an attempt to specifically defeat the curse of dimensionality. Yet, group testing does not scale and fails at indexing very large collections of images because its internal procedures analyze an excessively large fraction of the indexed data collection. This paper identifies these difficulties and proposes extensions to the group testing framework for similarity searches that allow to handle larger collections of feature vectors. We demonstrate that it can return high quality results much faster compared to state-of-the-art group testing strategies when indexing truly high-dimensional features that are indeed hardly indexable with traditional indexing approaches.
information hiding | 2016
Ahmet Iscen; Teddy Furon
This paper describes an approach where group testing helps in enforcing security and privacy in identification. We detail a particular scheme based on embedding and group testing. We add a second layer of defense, group vectors, where each group vector represents a set of dataset vectors. Whereas the selected embedding poorly protects the data when used alone, the group testing approach makes it much harder to reconstruct the data when combined with the embedding. Even when curious server and user collude to disclose the secret parameters, they cannot accurately recover the data. Another byproduct of our approach is that it reduces the complexity of the search and the required storage space. We show the interest of our work in a benchmark biometrics dataset, where we verify our theoretical analysis with real data.
european conference on information retrieval | 2015
Mustafa Ilker Sarac; Ahmet Iscen; Eren Golge; Pinar Duygulu
We introduce ConceptFusion, a method that aims high accuracy in categorizing large number of scenes, while keeping the model relatively simpler and efficient for scalability. The proposed method combines the advantages of both low-level representations and high-level semantic categories, and eliminates the distinctions between different levels through the definition of concepts. The proposed framework encodes the perspectives brought through different concepts by considering them in concept groups that are ensembled for the final decision. Experiments carried out on benchmark datasets show the effectiveness of incorporating concepts in different levels with different perspectives.
computer vision and pattern recognition | 2018
Ahmet Iscen; Yannis S. Avrithis; Giorgos Tolias; Teddy Furon; Ondrej Chum
computer vision and pattern recognition | 2018
Filip Radenovic; Ahmet Iscen; Giorgos Tolias; Yannis S. Avrithis; Ondrej Chum
international conference on multimedia retrieval | 2017
Ahmet Iscen; Giorgos Tolias; Yannis S. Avrithis; Teddy Furon; Ondrej Chum