Ai-Fu Che
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ai-Fu Che.
Biomacromolecules | 2008
Ai-Fu Che; Zhen-Mei Liu; Xiao-Jun Huang; Zhen-Gang Wang; Zhi-Kang Xu
Lectin affinity membranes have been receiving much attention for the separation and detection of various glycoconjugates. In this work, we present a simple and efficient method for the preparation of lectin affinity nanofibrous membranes. Chitosan-modified poly(acrylonitrile-co-acrylic acid) (PANCAA) nanofibrous membranes were first prepared by a coupling reaction between the primary amino groups of chitosan and the carboxyl groups of PANCAA electrospun membranes. Surface characterizations by attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM) confirm the chemical and morphological changes of the studied nanofibrous membranes. Fluorescence-labeled concanavalin A (FL-Con A) was then immobilized on these membranes via noncovalent binding. Analyses by fluorescence spectrophotometer (FS) and confocal laser scanning microscopy (CLSM) reveal that the immobilization of Con A onto the modified nanofibrous membranes has been successfully achieved on the basis of the electrostatic interaction and the specific recognition between Con A and chitosan. The results show that the amount of adsorbed FL-Con A increases dramatically with the increasing coupling degree of chitosan (CDC) on the nanofibrous membrane. Moreover, Con A immobilized on the chitosan-modified nanofibrous membranes (CMNMs) can remain relatively stable at pH 5.3. Therefore, it is believed that this work may provide a new kind of material for affinity application.
Macromolecular Bioscience | 2010
Ai-Fu Che; Xiao-Jun Huang; Zhi-Kang Xu
A simple and efficient method to fabricate a glycosylated surface on a polyacrylonitrile-based film is described. Construction and protein adsorption processes were monitored in situ using a QCM. A PANCHEMA film was deposited on the gold surface of the quartz crystal, and the glycosylated surface was then constructed through surface modification. Con A and BSA were used as probes to study the specificity of this surface to proteins. It can recognize Con A, while showing no specific interaction with BSA. The binding affinity indicates the presence of strong multivalent interactions between Con A and the glucose residues (cluster glycoside effect). Reproducibility and repeatability of the glycosylated polymer surface are sufficient to allow specific adsorption of Con A.
Journal of Physical Chemistry B | 2009
Ai-Fu Che; Ling-Shu Wan; Jun Ling; Zhen-Mei Liu; Zhi-Kang Xu
Molecular imprinting polymers (MIPs) are synthetic materials having specific cavities tailored for a target molecule. Thoroughly understanding the molecular recognition mechanism is favorable for the rational design, preparation, and application of MIPs. In this work, theophylline (THO)-imprinted poly(acrylonitrile-co-acrylic acid) (PANCAA) films with acrylic acid (AA) as the functional monomer were fabricated and a set of concentration-dependent Fourier transform infrared (FT-IR) spectra were collected. Two-dimensional (2D) correlation analysis of the spectra and density functional theory (DFT) calculation were conducted to evaluate the molecular recognition mechanism. DFT at the B3LYP/6-31+G(d,p) level is efficacious to calculate the binding energies (DeltaE) and the theoretical vibration frequencies for the possible configurations of THO_AA complexes. An optimized cyclic hydrogen-bonded configuration (complex THO_AA1) has the highest binding energy (-16.63 kcal mol(-1)) that is more stable than others. In addition, the experimental vibrations of the carbonyl groups in the FT-IR spectra were assigned on the basis of the DFT results. Moreover, methylacrylic acid (MAA) and caffeine (CAF) as compared analogues were also investigated. The DFT-based theoretical predictions are coincident with the reported results.
Australian Journal of Chemistry | 2008
Ai-Fu Che; Xiao-Jun Huang; Zhen-Gang Wang; Zhi-Kang Xu
Poly(acrylonitrile-co-acrylic acid) (PANCAA) was synthesized and fabricated into nanofibrous membranes by an electrospinning technique. Scanning electron microscopy revealed that membranes composed of uniformly thin and smooth nanofibres were obtained under optimized processing parameters. Surface modification with chitosan on these nanofibrous membranes was accomplished by a coupling reaction between the carboxylic groups of PANCAA and the primary amino groups of chitosan. Fluorescent labelling, weight measurement, FT-IR/ATR spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to confirm the modification process and determine the immobilization degree of chitosan. Platelet adhesion experiments were further carried out to evaluate the hemocompatibility of the studied nanofibrous membranes. Preliminary results indicated that the immobilization of chitosan on the PANCAA nanofibrous membranes was favourable for platelet adhesion.
Biomaterials | 2005
Peng Ye; Zhi-Kang Xu; Ai-Fu Che; Jian Wu; Patrick Seta
Polymer | 2005
Ai-Fu Che; Fu-Qiang Nie; Xiao-Dan Huang; Zhi-Kang Xu; Ke Yao
Journal of Membrane Science | 2006
Ling-Shu Wan; Zhi-Kang Xu; Xiao-Jun Huang; Ai-Fu Che; Zhen-Gang Wang
Journal of Membrane Science | 2011
Ai-Fu Che; Xiao-Jun Huang; Zhi-Kang Xu
Archive | 2008
Zhikang Xu; Ai-Fu Che; Xiao-Jun Huang
Archive | 2008
Zhikang Xu; Ai-Fu Che; Xiao-Jun Huang