Ai M. Loong
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ai M. Loong.
The Journal of Experimental Biology | 2004
Shit F. Chew; Noelle K. Y. Chan; Ai M. Loong; Kum C. Hiong; Wai L. Tam; Yuen K. Ip
SUMMARY This study aimed to elucidate the strategies adopted by the African slender lungfish, Protopterus dolloi, to ameliorate the toxicity of ammonia during short (6 days) or long (40 days) periods of aestivation in a layer of dried mucus in open air in the laboratory. Despite decreases in rates of ammonia and urea excretion, the ammonia content in the muscle, liver, brain and gut of P. dolloi remained unchanged after 6 days of aestivation compared with the control fasted for 6 days. For specimens aestivated for 40 days, the ammonia contents in the muscle, liver and gut were significantly lower than those of the control fasted for 40 days, which suggests a decrease in the rate of ammonia production. In addition, there were significant increases in contents of alanine, aspartate and glutamate in the muscle, which suggests decreases in their catabolism. During the first 6 days and the last 34 days of aestivation, the rate of ammonia production was reduced to 26% and 28%, respectively, of the control rate (6.83 μmol day–1 g–1 on day 0). During the first 6 days and the next 34 days of aestivation, the averaged urea synthesis rate was 2.39-fold and 3.8-fold, respectively, greater than the value of 0.25 μmol day–1 g–1 for the day 0 control kept in water. No induction of activities of the ornithine-urea cycle (OUC) enzymes was observed in specimens aestivated for 6 days, because the suppression of ammonia production led to a light demand on the OUC capacity. For specimens aestivated for 40 days, the activities of carbamoyl phosphate synthetase, ornithine transcarbamylase and argininosuccinate synthetase + lyase were significantly greater than those of the control fasted for 40 days. This is in agreement with the observation that the rate of urea synthesis in the last 34 days was greater than that in the first 6 days of aestivation. P. dolloi aestivated in a thin layer of dried mucus in open air with high O2 tension throughout the 40 days of aestivation, which could be the reason why it was able to sustain a high rate of urea synthesis despite this being an energy-intensive process. Our results indicate that a reduction in ammonia production and decreases in hepatic arginine and cranial tryptophan contents are important facets of aestivation in P. dolloi.
The Journal of Experimental Biology | 2003
Shit F. Chew; Tan F. Ong; Lilian Ho; Wai L. Tam; Ai M. Loong; Kum C. Hiong; Wai P. Wong; Yuen K. Ip
SUMMARY Like the marine ray Taeniura lymma, the African lungfish Protopterus dolloi possesses carbamoyl phosphate III (CPS III) in the liver and not carbamoyl phosphate I (CPS I), as in the mouse Mus musculus or as in other African lungfish reported elsewhere. However, similar to other African lungfish and tetrapods, hepatic arginase of P. dolloi is present mainly in the cytosol. Glutamine synthetase activity is present in both the mitochondrial and cytosolic fractions of the liver of P. dolloi. Therefore, we conclude that P. dolloi is a more primitive extant lungfish, which is intermediate between aquatic fish and terrestrial tetrapods, and represents a link in the fish-tetrapod continuum. During 6 days of aerial exposure, the ammonia excretion rate in P. dolloi decreased significantly to 8-16% of the submerged control. However, there were no significant increases in ammonia contents in the muscle, liver or plasma of specimens exposed to air for 6 days. These results suggest that (1) endogenous ammonia production was drastically reduced and (2) endogenous ammonia was detoxified effectively into urea. Indeed, there were significant decreases in glutamate, glutamine and lysine levels in the livers of fish exposed to air, which led to a decrease in the total free amino acid content. This indirectly confirms that the specimen had reduced its rates of proteolysis and/or amino acid catabolism to suppress endogenous ammonia production. Simultaneously, there were significant increases in urea levels in the muscle (8-fold), liver (10.5-fold) and plasma (12.6-fold) of specimens exposed to air for 6 days. Furthermore, there was an increase in the hepatic ornithine-urea cycle (OUC) capacity, with significant increases in the activities of CPS III (3.8-fold), argininosuccinate synthetase + lyase (1.8-fold) and, more importantly, glutamine synthetase (2.2-fold). This is the first report on the upregulation of OUC capacity and urea synthesis rate in an African lungfish exposed to air. Upon re-immersion, the urea excretion rate increased 22-fold compared with that of the control specimen, which is the greatest increase among fish during emersion-immersion transitions and suggests that P. dolloi possesses transporters that facilitate the excretion of urea in water.
The Journal of Experimental Biology | 2003
Wai L. Tam; Wai P. Wong; Ai M. Loong; Kum C. Hiong; Shit F. Chew; James S. Ballantyne; Yuen K. Ip
SUMMARY The white-edge freshwater whip ray Himantura signifer can survive in freshwater (0.7‰) indefinitely or in brackish water (20‰) for at least two weeks in the laboratory. In freshwater, the blood plasma was maintained hyperosmotic to that of the external medium. There was approximately 44 mmol l-1 of urea in the plasma, with the rest of the osmolality made up mainly by Na+ and Cl-. In freshwater, it was not completely ureotelic, excreting up to 45% of its nitrogenous waste as urea. Unlike the South American freshwater stingray Potamotrygon motoro, H. signifer has a functional ornithine-urea cycle (OUC) in the liver, with hepatic carbamoylphosphate synthetase III (CPS III) and glutamine synthetase (GS) activities lower than those of the marine blue-spotted fan tail ray Taeniura lymma. More importantly, the stomach of H. signifer also possesses a functional OUC, the capacity (based on CPS III activity) of which was approximately 70% that in the liver. When H. signifer was exposed to a progressive increase in salinity through an 8-day period, there was a continuous decrease in the rate of ammonia excretion. In 20‰ water, urea levels in the muscle, brain and plasma increased significantly. In the plasma, osmolality increased to 571 mosmol kg-1, in which urea contributed 83 mmol l-1. Approximately 59% of the excess urea accumulated in the tissues of the specimens exposed to 20‰ water was equivalent to the deficit in ammonia excretion through the 8-day period, indicating that an increase in the rate of urea synthesis de novo at higher salinities would have occurred. Indeed, there was an induction in the activity of CPS III in both the liver and stomach, and activities of GS, ornithine transcarbamoylase and arginase in the liver. Furthermore, there was a significant decrease in the rate of urea excretion during passage through 5‰, 10‰ and 15‰ water. Although the local T. lymma in full-strength sea water (30‰) had a much greater plasma urea concentration (380 mmol l-1), its urea excretion rate (4.7 μmol day-1 g-1) was comparable with that of H. signifier in 20‰ water. Therefore, H. signifer appears to have reduced its capacity to retain urea in order to survive in the freshwater environment and, consequently, it could not survive well in full-strength seawater.
The Journal of Experimental Biology | 2006
Yi L. Tay; Ai M. Loong; Kum C. Hiong; Shi J. Lee; Yvonne Y.M. Tng; Nicklaus L.J. Wee; Serene M. L. Lee; Wai P. Wong; Shit F. Chew; Jonathan M. Wilson; Yuen K. Ip
SUMMARY The climbing perch, Anabas testudineus, inhabits large rivers, canals, stagnant water bodies, swamps and estuaries, where it can be confronted with aerial exposure during the dry season. This study aimed to examine nitrogen excretion and metabolism in this fish during 4 days of emersion. Contrary to previous reports, A. testudineus does not possess a functional hepatic ornithineurea cycle because no carbamoyl phosphate synthetase I or III activity was detected in its liver. It was ammonotelic in water, and did not detoxify ammonia through increased urea synthesis during the 4 days of emersion. Unlike many air-breathing fishes reported elsewhere, A. testudineus could uniquely excrete ammonia during emersion at a rate similar to or higher than that of the immersed control. In spite of the fact that emersion had no significant effect on the daily ammonia excretion rate, tissue ammonia content increased significantly in the experimental fish. Thus, it can be concluded that 4 days of emersion caused an increase in ammonia production in A. testudineus, and probably because of this, a transient increase in the glutamine content in the brain occurred. Because there was a significant increase in the total essential free amino acid in the experimental fish after 2 days of emersion, it can be deduced that increased ammonia production during emersion was a result of increased amino acid catabolism and protein degradation. Our results provide evidence for the first time that A. testudineus was able to continually excrete ammonia in water containing 12 mmol l-1 NH4Cl. During emersion, active ammonia excretion apparently occurred across the branchial and cutaneous surfaces, and ammonia concentrations in water samples collected from these surfaces increased to 20 mmol l-1. It is probable that the capacities of airbreathing and active ammonia excretion facilitated the utilization of amino acids by A. testudineus as an energy source to support locomotor activity during emersion. As a result, it is capable of wandering long distance on land from one water body to another as reported in the literature.
Physiological and Biochemical Zoology | 2004
Yuen K. Ip; Ramdzan M. Zubaidah; Pei C. Liew; Ai M. Loong; Kum C. Hiong; Wai P. Wong; Shit F. Chew
The African sharptooth catfish Clarias gariepinus lives in freshwater, is an obligatory air breather, and exhibits high tolerance of environmental ammonia. This study aimed at elucidating the strategies adopted by C. gariepinus to defend against ammonia toxicity during ammonia exposure. No carbamoyl phosphate synthetase (CPS) I or III activities were detected in the liver or muscle of the adult C. gariepinus. In addition, activities of other ornithine‐urea cycle (OUC) enzymes, especially ornithine transcarbamylase, were low in the liver, indicating that adult C. gariepinus does not have a “functional” hepatic OUC. After being exposed to 50 or 100 mM NH4Cl for 5 d, there was no induction of hepatic OUC enzymes and no accumulation of urea in tissues of the experimental animals. In addition, the rate of urea excretion remained low and unchanged. Hence, ammonia exposure did not induce ureogenesis or ureotely in C. gariepinus as suggested elsewhere for another obligatory air‐breathing catfish of the same genus, Clarias batrachus, from India. Surprisingly, the local C. batrachus did not possess any detectable CPS I or III activities in the liver or muscle as had been reported for the Indian counterpart. There were no changes in levels of alanine in the muscle, liver, and plasma of C. gariepinus exposed to 50 or 100 mM NH4Cl for 5 d; neither were there any changes in the glutamine levels in these tissues. Yet even after being exposed to 100 mM NH4Cl for 5 d, there was no significant increase in the level of ammonia in the muscle, which constitutes the bulk of the specimen. In addition, the level of ammonia accumulated in the plasma was relatively low compared to other tropical air‐breathing fishes. More importantly, for all NH4Cl concentrations tested (10, 50, or 100 mM), the plasma ammonia level was maintained relatively constant (2.2–2.4 mM). These results suggest that C. gariepinus was able to excrete endogenous ammonia and infiltrated exogenous ammonia against a very steep ammonia gradient. When exposed to freshwater (pH 7.0) with or without 10 mM NH4Cl, C. gariepinus was able to excrete ammonia continuously to the external medium for at least 72 h. This was achieved while the plasma \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2008
Ai M. Loong; S. F. Ang; Wai P. Wong; Hans-Otto Pörtner; Christian Bock; Rolf Wittig; C.R. Bridges; Shit F. Chew; Yuen Kwong Ip
Physiological and Biochemical Zoology | 2006
Yuen K. Ip; Ai M. Loong; Kum C. Hiong; Wai P. Wong; Shit F. Chew; Konda Reddy; Balasubramaniam Sivaloganathan; James S. Ballantyne
\mathrm{NH}^{+}_{4}
The Journal of Experimental Biology | 2003
Yuen K. Ip; Wai L. Tam; Wai P. Wong; Ai M. Loong; Kum C. Hiong; James S. Ballantyne; Shit F. Chew
The Journal of Experimental Biology | 2009
Y. K. Ip; Ai M. Loong; B. Ching; G. H. Y. Tham; Wai P. Wong; Shit F. Chew
\end{document} and NH3 concentrations were significantly lower than those of the external medium. Diffusion trapping of NH3 through boundary layer acidification can be eliminated as the pH of the external medium became more alkaline instead. These results represent the first report on a freshwater fish (C. gariepinus) adopting active excretion of ammonia (probably \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2012
José M. Icardo; Ai M. Loong; Elvira Colvee; Wai P. Wong; Yuen K. Ip