Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wai P. Wong is active.

Publication


Featured researches published by Wai P. Wong.


The Journal of Experimental Biology | 2003

Urea synthesis in the African lungfish Protopterus dolloi - hepatic carbamoyl phosphate synthetase III and glutamine synthetase are upregulated by 6 ·days of aerial exposure

Shit F. Chew; Tan F. Ong; Lilian Ho; Wai L. Tam; Ai M. Loong; Kum C. Hiong; Wai P. Wong; Yuen K. Ip

SUMMARY Like the marine ray Taeniura lymma, the African lungfish Protopterus dolloi possesses carbamoyl phosphate III (CPS III) in the liver and not carbamoyl phosphate I (CPS I), as in the mouse Mus musculus or as in other African lungfish reported elsewhere. However, similar to other African lungfish and tetrapods, hepatic arginase of P. dolloi is present mainly in the cytosol. Glutamine synthetase activity is present in both the mitochondrial and cytosolic fractions of the liver of P. dolloi. Therefore, we conclude that P. dolloi is a more primitive extant lungfish, which is intermediate between aquatic fish and terrestrial tetrapods, and represents a link in the fish-tetrapod continuum. During 6 days of aerial exposure, the ammonia excretion rate in P. dolloi decreased significantly to 8-16% of the submerged control. However, there were no significant increases in ammonia contents in the muscle, liver or plasma of specimens exposed to air for 6 days. These results suggest that (1) endogenous ammonia production was drastically reduced and (2) endogenous ammonia was detoxified effectively into urea. Indeed, there were significant decreases in glutamate, glutamine and lysine levels in the livers of fish exposed to air, which led to a decrease in the total free amino acid content. This indirectly confirms that the specimen had reduced its rates of proteolysis and/or amino acid catabolism to suppress endogenous ammonia production. Simultaneously, there were significant increases in urea levels in the muscle (8-fold), liver (10.5-fold) and plasma (12.6-fold) of specimens exposed to air for 6 days. Furthermore, there was an increase in the hepatic ornithine-urea cycle (OUC) capacity, with significant increases in the activities of CPS III (3.8-fold), argininosuccinate synthetase + lyase (1.8-fold) and, more importantly, glutamine synthetase (2.2-fold). This is the first report on the upregulation of OUC capacity and urea synthesis rate in an African lungfish exposed to air. Upon re-immersion, the urea excretion rate increased 22-fold compared with that of the control specimen, which is the greatest increase among fish during emersion-immersion transitions and suggests that P. dolloi possesses transporters that facilitate the excretion of urea in water.


Aquatic Toxicology | 2009

Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper).

Biyun Ching; Shit F. Chew; Wai P. Wong; Yuen K. Ip

This study aimed to elucidate whether exposure to a sublethal concentration (8mmoll(-1)) of NH(4)Cl (pH 7.0) for 12 or 48h would induce oxidative stress in gills and brain of the mudskipper Boleophthalmus boddarti which has high tolerance of environmental and brain ammonia. The gills of B. boddarti experienced a transient oxidative stress after 12h of ammonia exposure as evidenced by an increase in lipid hydroperoxide content, decreases in contents of reduced glutathione (GSH) and total GSH equivalent, and in activities of total glutathione peroxidase, glutathione reductase and catalase. There were also transient increases in protein abundance of p53 and p38 in gills of fish exposed to ammonia for 12h, although the protein abundance of phosphorylated p53 remained unchanged and there was a decrease in the protein abundance of phosphorylated p38, at hour 12. Since the majority of these oxidative parameters returned to control levels at hour 48, the ability of the gills of B. boddarti to recover from ammonia-induced oxidative stress might contribute to its high environmental ammonia tolerance. Ammonia also induced oxidative stress in the brain of B. boddarti at hours 12 and 48 as evidenced by the accumulation of carbonyl proteins, elevation in oxidized glutathione (GSSG) content and GSSG/GSH, decreases in activities of glutathione reductase and catalase, and an increase in the activity of superoxide dismutase. The capacity to increase glutathione synthesis and GSH content could alleviate severe ammonia-induced oxidative and nitrosative stress in the brain. Furthermore, the ability to decrease the protein abundance of p38 and phosphorylated p53 might prevent cell swelling, contributing in part to the high ammonia tolerance in the brain of B. boddarti. Overall, our results indicate that there could be multiple routes through which ammonia induced oxidative stress in and outside the brain.


The Journal of Experimental Biology | 2003

The osmotic response of the Asian freshwater stingray (Himantura signifer) to increased salinity: a comparison with marine (Taeniura lymma) and Amazonian freshwater (Potamotrygon motoro) stingrays

Wai L. Tam; Wai P. Wong; Ai M. Loong; Kum C. Hiong; Shit F. Chew; James S. Ballantyne; Yuen K. Ip

SUMMARY The white-edge freshwater whip ray Himantura signifer can survive in freshwater (0.7‰) indefinitely or in brackish water (20‰) for at least two weeks in the laboratory. In freshwater, the blood plasma was maintained hyperosmotic to that of the external medium. There was approximately 44 mmol l-1 of urea in the plasma, with the rest of the osmolality made up mainly by Na+ and Cl-. In freshwater, it was not completely ureotelic, excreting up to 45% of its nitrogenous waste as urea. Unlike the South American freshwater stingray Potamotrygon motoro, H. signifer has a functional ornithine-urea cycle (OUC) in the liver, with hepatic carbamoylphosphate synthetase III (CPS III) and glutamine synthetase (GS) activities lower than those of the marine blue-spotted fan tail ray Taeniura lymma. More importantly, the stomach of H. signifer also possesses a functional OUC, the capacity (based on CPS III activity) of which was approximately 70% that in the liver. When H. signifer was exposed to a progressive increase in salinity through an 8-day period, there was a continuous decrease in the rate of ammonia excretion. In 20‰ water, urea levels in the muscle, brain and plasma increased significantly. In the plasma, osmolality increased to 571 mosmol kg-1, in which urea contributed 83 mmol l-1. Approximately 59% of the excess urea accumulated in the tissues of the specimens exposed to 20‰ water was equivalent to the deficit in ammonia excretion through the 8-day period, indicating that an increase in the rate of urea synthesis de novo at higher salinities would have occurred. Indeed, there was an induction in the activity of CPS III in both the liver and stomach, and activities of GS, ornithine transcarbamoylase and arginase in the liver. Furthermore, there was a significant decrease in the rate of urea excretion during passage through 5‰, 10‰ and 15‰ water. Although the local T. lymma in full-strength sea water (30‰) had a much greater plasma urea concentration (380 mmol l-1), its urea excretion rate (4.7 μmol day-1 g-1) was comparable with that of H. signifier in 20‰ water. Therefore, H. signifer appears to have reduced its capacity to retain urea in order to survive in the freshwater environment and, consequently, it could not survive well in full-strength seawater.


The Journal of Experimental Biology | 2005

Chronic and acute ammonia toxicity in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti: brain ammonia and glutamine contents, and effects of methionine sulfoximine and MK801.

Yuen K. Ip; Mavis W. F. Leong; Mei Y. Sim; Gillian S. Goh; Wai P. Wong; Shit F. Chew

SUMMARY The objective of this study was to elucidate if chronic and acute ammonia intoxication in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti, were associated with high levels of ammonia and/or glutamine in their brains, and if acute ammonia intoxication could be prevented by the administration of methionine sulfoximine [MSO; an inhibitor of glutamine synthetase (GS)] or MK801 [an antagonist of n-methyl d-aspartate type glutamate (NMDA) receptors]. For P. schlosseri and B. boddaerti exposed to sublethal concentrations (100 and 8 mmol l-1 NH4Cl, respectively, at pH 7.0) of environmental ammonia for 4 days, brain ammonia contents increased drastically during the first 24 h, and they reached 18 and 14.5 μmol g-1, respectively, at hour 96. Simultaneously, there were increases in brain glutamine contents, but brain glutamate contents were unchanged. Because glutamine accumulated to exceptionally high levels in brains of P. schlosseri (29.8 μmol g-1) and B. boddaerti (12.1μ mol g-1) without causing death, it can be concluded that these two mudskippers could ameliorate those problems associated with glutamine synthesis and accumulation as observed in patients suffering from hyperammonemia. P. schlosseri and B. boddaerti could tolerate high doses of ammonium acetate (CH3COONH4) injected into their peritoneal cavities, with 24 h LC50 of 15.6 and 12.3 μmol g-1 fish, respectively. After the injection with a sublethal dose of CH3COONH4 (8 μmol g-1 fish), there were significant increases in ammonia (5.11 and 8.36 μmol g-1, respectively) and glutamine (4.22 and 3.54 μmol g-1, respectively) levels in their brains at hour 0.5, but these levels returned to normal at hour 24. By contrast, for P. schlosseri and B. boddaerti that succumbed within 15-50 min to a dose of CH3COONH4 (15 and 12 μmol g-1 fish, respectively) close to the LC50 values, the ammonia contents in the brains reached much higher levels (12.8 and 14.9 μmol g-1, respectively), while the glutamine level remained relatively low (3.93 and 2.67 μmol g-1, respectively). Thus, glutamine synthesis and accumulation in the brain was not the major cause of death in these two mudskippers confronted with acute ammonia toxicity. Indeed, MSO, at a dosage (100 μg g-1 fish) protective for rats, did not protect B. boddaerti against acute ammonia toxicity, although it was an inhibitor of GS activities from the brains of both mudskippers. In the case of P. schlosseri, MSO only prolonged the time to death but did not reduce the mortality rate (100%). In addition, MK801 (2 μg g-1 fish) had no protective effect on P. schlosseri and B. boddaerti injected with a lethal dose of CH3COONH4, indicating that activation of NMDA receptors was not the major cause of death during acute ammonia intoxication. Thus, it can be concluded that there are major differences in mechanisms of chronic and acute ammonia toxicity between brains of these two mudskippers and mammalian brains.


The Journal of Experimental Biology | 2006

Active ammonia transport and excretory nitrogen metabolism in the climbing perch, Anabas testudineus, during 4 days of emersion or 10·minutes of forced exercise on land

Yi L. Tay; Ai M. Loong; Kum C. Hiong; Shi J. Lee; Yvonne Y.M. Tng; Nicklaus L.J. Wee; Serene M. L. Lee; Wai P. Wong; Shit F. Chew; Jonathan M. Wilson; Yuen K. Ip

SUMMARY The climbing perch, Anabas testudineus, inhabits large rivers, canals, stagnant water bodies, swamps and estuaries, where it can be confronted with aerial exposure during the dry season. This study aimed to examine nitrogen excretion and metabolism in this fish during 4 days of emersion. Contrary to previous reports, A. testudineus does not possess a functional hepatic ornithineurea cycle because no carbamoyl phosphate synthetase I or III activity was detected in its liver. It was ammonotelic in water, and did not detoxify ammonia through increased urea synthesis during the 4 days of emersion. Unlike many air-breathing fishes reported elsewhere, A. testudineus could uniquely excrete ammonia during emersion at a rate similar to or higher than that of the immersed control. In spite of the fact that emersion had no significant effect on the daily ammonia excretion rate, tissue ammonia content increased significantly in the experimental fish. Thus, it can be concluded that 4 days of emersion caused an increase in ammonia production in A. testudineus, and probably because of this, a transient increase in the glutamine content in the brain occurred. Because there was a significant increase in the total essential free amino acid in the experimental fish after 2 days of emersion, it can be deduced that increased ammonia production during emersion was a result of increased amino acid catabolism and protein degradation. Our results provide evidence for the first time that A. testudineus was able to continually excrete ammonia in water containing 12 mmol l-1 NH4Cl. During emersion, active ammonia excretion apparently occurred across the branchial and cutaneous surfaces, and ammonia concentrations in water samples collected from these surfaces increased to 20 mmol l-1. It is probable that the capacities of airbreathing and active ammonia excretion facilitated the utilization of amino acids by A. testudineus as an energy source to support locomotor activity during emersion. As a result, it is capable of wandering long distance on land from one water body to another as reported in the literature.


Physiological and Biochemical Zoology | 2004

African Sharptooth Catfish Clarias gariepinus Does Not Detoxify Ammonia to Urea or Amino Acids but Actively Excretes Ammonia during Exposure to Environmental Ammonia

Yuen K. Ip; Ramdzan M. Zubaidah; Pei C. Liew; Ai M. Loong; Kum C. Hiong; Wai P. Wong; Shit F. Chew

The African sharptooth catfish Clarias gariepinus lives in freshwater, is an obligatory air breather, and exhibits high tolerance of environmental ammonia. This study aimed at elucidating the strategies adopted by C. gariepinus to defend against ammonia toxicity during ammonia exposure. No carbamoyl phosphate synthetase (CPS) I or III activities were detected in the liver or muscle of the adult C. gariepinus. In addition, activities of other ornithine‐urea cycle (OUC) enzymes, especially ornithine transcarbamylase, were low in the liver, indicating that adult C. gariepinus does not have a “functional” hepatic OUC. After being exposed to 50 or 100 mM NH4Cl for 5 d, there was no induction of hepatic OUC enzymes and no accumulation of urea in tissues of the experimental animals. In addition, the rate of urea excretion remained low and unchanged. Hence, ammonia exposure did not induce ureogenesis or ureotely in C. gariepinus as suggested elsewhere for another obligatory air‐breathing catfish of the same genus, Clarias batrachus, from India. Surprisingly, the local C. batrachus did not possess any detectable CPS I or III activities in the liver or muscle as had been reported for the Indian counterpart. There were no changes in levels of alanine in the muscle, liver, and plasma of C. gariepinus exposed to 50 or 100 mM NH4Cl for 5 d; neither were there any changes in the glutamine levels in these tissues. Yet even after being exposed to 100 mM NH4Cl for 5 d, there was no significant increase in the level of ammonia in the muscle, which constitutes the bulk of the specimen. In addition, the level of ammonia accumulated in the plasma was relatively low compared to other tropical air‐breathing fishes. More importantly, for all NH4Cl concentrations tested (10, 50, or 100 mM), the plasma ammonia level was maintained relatively constant (2.2–2.4 mM). These results suggest that C. gariepinus was able to excrete endogenous ammonia and infiltrated exogenous ammonia against a very steep ammonia gradient. When exposed to freshwater (pH 7.0) with or without 10 mM NH4Cl, C. gariepinus was able to excrete ammonia continuously to the external medium for at least 72 h. This was achieved while the plasma \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape


Frontiers in Physiology | 2013

Increases in apoptosis, caspase activity and expression of p53 and bax, and the transition between two types of mitochondrion-rich cells, in the gills of the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater.

Biyun Ching; Xiu L. Chen; Jing H. A. Yong; Jonathan M. Wilson; Kum C. Hiong; Eugene W. L. Sim; Wai P. Wong; Siew Hong Lam; Shit F. Chew; Yuen K. Ip


Journal of Anatomy | 2008

The structural characteristics of the heart ventricle of the African lungfish Protopterus dolloi: freshwater and aestivation

José M. Icardo; Daniela Amelio; Filippo Garofalo; Elvira Colvee; Maria Carmela Cerra; Wai P. Wong; Bruno Tota; Yuen K. Ip

\mathrm{NH}^{+}_{4}


The Journal of Experimental Biology | 2006

Exposure to brackish water, upon feeding, leads to enhanced conservation of nitrogen and increased urea synthesis and retention in the Asian freshwater stingray Himantura signifer.

Shit F. Chew; Nirmala K. Poothodiyil; Wai P. Wong; Yuen K. Ip


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2008

Renal Corpuscle of the African Lungfish Protopterus dolloi: Structural and Histochemical Modifications During Aestivation

José L. Ojeda; Wai P. Wong; Yuen K. Ip; José M. Icardo

\end{document} and NH3 concentrations were significantly lower than those of the external medium. Diffusion trapping of NH3 through boundary layer acidification can be eliminated as the pH of the external medium became more alkaline instead. These results represent the first report on a freshwater fish (C. gariepinus) adopting active excretion of ammonia (probably \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape

Collaboration


Dive into the Wai P. Wong's collaboration.

Top Co-Authors

Avatar

Shit F. Chew

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Yuen K. Ip

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Kum C. Hiong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ai M. Loong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Biyun Ching

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jasmine L. Y. Ong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Celine Y. L. Choo

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

You R. Chng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Mel V. Boo

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Xiu L. Chen

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge