Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ai Shinomiya is active.

Publication


Featured researches published by Ai Shinomiya.


Nature | 2002

DMY is a Y-specific DM-domain gene required for male development in the medaka fish

Masaru Matsuda; Yoshitaka Nagahama; Ai Shinomiya; Tadashi Sato; Chika Matsuda; Tohru Kobayashi; Craig E. Morrey; Naoki Shibata; Shuichi Asakawa; Nobuyoshi Shimizu; Hiroshi Hori; Satoshi Hamaguchi; Mitsuru Sakaizumi

Although the sex-determining gene Sry has been identified in mammals, no comparable genes have been found in non-mammalian vertebrates. Here, we used recombinant breakpoint analysis to restrict the sex-determining region in medaka fish (Oryzias latipes) to a 530-kilobase (kb) stretch of the Y chromosome. Deletion analysis of the Y chromosome of a congenic XY female further shortened the region to 250 kb. Shotgun sequencing of this region predicted 27 genes. Three of these genes were expressed during sexual differentiation. However, only the DM-related PG17 was Y specific; we thus named it DMY. Two naturally occurring mutations establish DMYs critical role in male development. The first heritable mutant—a single insertion in exon 3 and the subsequent truncation of DMY—resulted in all XY female offspring. Similarly, the second XY mutant female showed reduced DMY expression with a high proportion of XY female offspring. During normal development, DMY is expressed only in somatic cells of XY gonads. These findings strongly suggest that the sex-specific DMY is required for testicular development and is a prime candidate for the medaka sex-determining gene.


Development Growth & Differentiation | 2000

The vasa‐like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes

Ai Shinomiya; Minoru Tanaka; Tohru Kobayashi; Yoshitaka Nagahama; Satoshi Hamaguchi

The medaka homolog of the Drosophila vasa gene, olvas (Oryzias latipes vas) was obtained using polymerase chain reaction of medaka cDNA from the testis and ovary. The spatio‐temporal expression pattern of olvas transcripts was observed by in situ hybridization on gonads and embryos. The transcripts for olvas were exclusively detected in the cytoplasm of germ cells in the testis and ovary, not in gonadal somatic cells. In the early developmental stages, each blastomere possessed the maternal transcripts of olvas, which disappeared during gastrula stages. At the late gastrula stage, specific expression of olvas was observed only in germline cells located at the posterior shield. Embryos after the hybridization were examined histologically, and the distribution and migration path of primordial germ cells (PGC) during early stages of embryonic‐body formation were revealed using the olvas gene as a germline cell marker. The PGC were translocated from the posterior shield to both sides of the embryonic body via the inner embryonic body in the medaka.


Proceedings of the National Academy of Sciences of the United States of America | 2007

DMY gene induces male development in genetically female (XX) medaka fish

Masaru Matsuda; Ai Shinomiya; Masato Kinoshita; Aya Suzuki; Tohru Kobayashi; Bindhu Paul-Prasanth; En-lieng Lau; Satoshi Hamaguchi; Mitsuru Sakaizumi; Yoshitaka Nagahama

Although the sex-determining gene SRY/Sry has been identified in mammals, homologues and genes that have a similar function have yet to be identified in nonmammalian vertebrates. Recently, DMY (the DM-domain gene on the Y chromosome) was cloned from the sex-determining region on the Y chromosome of the teleost fish medaka (Oryzias latipes). DMY has been shown to be required for the normal development of male individuals. In this study, we show that a 117-kb genomic DNA fragment that carries DMY is able to induce testis differentiation and subsequent male development in XX (genetically female) medaka. In addition, overexpression of DMY cDNA under the control of the CMV promoter also caused XX sex reversal. These results demonstrate that DMY is sufficient for male development in medaka and suggest that the functional difference between the X and Y chromosomes in medaka is a single gene. Our data indicate that DMY is an additional sex-determining gene in vertebrates.


Mechanisms of Development | 2004

A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes.

Makoto Furutani-Seiki; Takao Sasado; Chikako Morinaga; Hiroshi Suwa; Katsutoshi Niwa; Hiroki Yoda; Tomonori Deguchi; Yukihiro Hirose; Akihito Yasuoka; Thorsten Henrich; Tomomi Watanabe; Norimasa Iwanami; Daiju Kitagawa; Kota Saito; Masakazu Osakada; Sanae Kunimatsu; Akihiro Momoi; Harun Elmasri; Christoph Winkler; Mirana Ramialison; Felix Loosli; Rebecca Quiring; Matthias Carl; Clemens Grabher; Sylke Winkler; Filippo Del Bene; Ai Shinomiya; Yasuko Kota; Toshiyuki Yamanaka; Yasuko Okamoto

A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.


Zoological Science | 2004

Field survey of sex-reversals in the medaka, Oryzias latipes: genotypic sexing of wild populations.

Ai Shinomiya; Hiroyuki Otake; Ken-ichi Togashi; Satoshi Hamaguchi; Mitsuru Sakaizumi

Abstract The medaka, Oryzias latipes, has an XX/XY sex determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a prime candidate for the sex-determining gene. Furthermore, the crucial role of DMY during male development was established by studying two wild-derived XY female mutants. In this study, to find new DMY and sex-determination related gene mutations, we conducted a broad survey of the genotypic sex (DMY-negative or DMY-positive) of wild fish. We examined 2274 wild-caught fish from 40 localities throughout Japan, and 730 fish from 69 wild stocks from Japan, Korea, China, and Taiwan. The phenotypic sex type agreed with the genotypic sex of most fish, while 26 DMY-positive (XY) females and 15 DMY-negative (XX) males were found from 13 and 8 localities, respectively. Sixteen XY sex-reversals from 11 localities were mated with XY males of inbred strains, and the genotypic and phenotypic sexes of the F1 progeny were analyzed. All these XY sex-reversals produced XY females in the F1 generation, and all F1 XY females had the maternal Y chromosome. These results show that DMY is a common sex-determining gene in wild populations of O. latipes and that all XY sex-reversals investigated had a DMY or DMY-linked gene mutation.


Genetics | 2006

Wild-derived XY sex-reversal mutants in the medaka, Oryzias latipes

Hiroyuki Otake; Ai Shinomiya; Masaru Matsuda; Satoshi Hamaguchi; Mitsuru Sakaizumi

The medaka, Oryzias latipes, has an XX/XY sex-determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a sex-determining gene in this species. Previously, we found 23 XY sex-reversed females from 11 localities by examining the genotypic sex of wild-caught medaka. Genetic analyses revealed that all these females had Y-linked gene mutations. Here, we aimed to clarify the cause of this sex reversal. To achieve this, we screened for mutations in the amino acid coding sequence of DMY and examined DMY expression at 0 days after hatching (dah) using densitometric semiquantitative RT–PCR. We found that the mutants could be classified into two groups. One contained mutations in the amino acid coding sequence of DMY, while the other had reduced DMY expression at 0 dah although the DMY coding sequence was normal. For the latter, histological analyses indicated that YwOurYwOur (YwOur, Y chromosome derived from an Oura XY female) individuals with the lowest DMY expression among the tested mutants were expected to develop into females at 0 dah. These results suggest that early testis development requires DMY expression above a threshold level. Mutants with reduced DMY expression may prove valuable for identifying DMY regulatory elements.


Mechanisms of Development | 2004

Mutations affecting gonadal development in Medaka, Oryzias latipes

Chikako Morinaga; Takeshi Tomonaga; Takao Sasado; Hiroshi Suwa; Katsutoshi Niwa; Akihito Yasuoka; Thorsten Henrich; Tomomi Watanabe; Tomonori Deguchi; Hiroki Yoda; Yukihiro Hirose; Norimasa Iwanami; Sanae Kunimatsu; Yasuko Okamoto; Toshiyuki Yamanaka; Ai Shinomiya; Minoru Tanaka; Hisato Kondoh; Makoto Furutani-Seiki

A gonad is formed from germ cells and somatic mesodermal cells through their interactions. Its development is coupled with the determination and differentiation of the sex and sex-associated traits. We carried out a large-scale screening of Medaka mutants in which gonadal development is affected. Screening was performed on larvae at 8 days posthatching for abnormal abundance and/or distribution of germ cells detected by the in situ hybridization for olvas (Medaka vasa). We describe here 16 mutants of 13 genes, which are classified into four groups. Group 1, consisting of four mutants of three genes kon, tot) characterised by an increase in germ cell number. An adult tot homozygote fish has the characteristic feature of possessing hypertrophic gonads filled with immature oocytes. Group 2, represented by a single gene (zen) mutant characterized by a gradual loss of germ cells. Group 3, consisting of four mutants of distinct genes (eko, eki, sht, ano) showing irregular clustering of germ cells. Group 4, consisting of seven mutants of five genes (arr, hyo, mzr, hdr, fbk) showing fragmented clusters of germ cells. In some mutants belonging to Groups 1, 3 and 4, the expression level of ftz-f1 (sf-1/Ad4BP) in gonadal somatic cells significantly decreased, suggesting that interaction between somatic and germ cells is affected.


Zoological Science | 2004

The XX-XY Sex-determination System in Oryzias luzonensis and O. mekongensis Revealed by the Sex Ratio of the Progeny of Sex-reversed Fish

Satoshi Hamaguchi; Yota Toyazaki; Ai Shinomiya; Mitsuru Sakaizumi

Abstract The sex-determining gene in Oryzias latipes and O. curvinotus has been proved to be DMY. Although O. curvinotus has the DMY gene on the Y chromosome which is homologous to the Y chromo-some of O. latipes, the sex-determining mechanism of other Oryzias fishes has not been identified. In order to uncover the sex-determining mechanism of O. luzonensis and O. mekongensis, which are most closely related species to O. latipes and O. curvinotus, we analyzed the sex ratio of the progeny of sex-reversed fish. We were able to obtain sex-reversed males by the administration of methyltestosterone, and found that these yielded all-female offspring in both species. These results indicate that O. luzonensis and O. mekongensis have the XX-XY sex-determination system.


Genetics | 2012

Gene Duplication of endothelin 3 Is Closely Correlated with the Hyperpigmentation of the Internal Organs (Fibromelanosis) in Silky Chickens

Ai Shinomiya; Yasunari Kayashima; Keiji Kinoshita; Makoto Mizutani; Takao Namikawa; Yoichi Matsuda; Toyoko Akiyama

During early development in vertebrates, pluripotent cells are generated from the neural crest and migrate according to their presumptive fate. In birds and mammals, one of the progeny cells, melanoblasts, generally migrate through a dorsolateral route of the trunk region and differentiate to melanocytes. However, Silky is an exceptional chicken in which numerous melanoblasts travel via a ventral pathway and disperse into internal organs. Finally, these ectopic melanocytes induce heavy dermal and visceral melanization known as Fibromelanosis (Fm). To identify the genetic basis of this phenotype, we confirmed the mode of inheritance of Fm as autosomal dominant and then performed linkage analysis with microsatellite markers and sequence-tagged site markers. Using 85 backcross progeny from crossing Black Minorca chickens (BM-C) with F1 individuals between White Silky (WS) and BM-C Fm was located on 10.2–11.7 Mb of chicken chromosome 20. In addition, we noticed a DNA marker that all Silky chickens and the F1 individuals showed heterozygous genotyping patterns, suggesting gene duplication in the Fm region. By quantitative real-time PCR assay, Silky line-specific gene duplication was detected as an ∼130-kb interval. It contained five genes including endothelin 3 (EDN3), which encoded a potent mitogen for melanoblasts/melanocytes. EDN3 with another three of these duplicated genes in Silky chickens expressed almost twofold of those in BM-C. Present results strongly suggest that the increase of the expression levels resulting from the gene duplication in the Fm region is the trigger of hypermelanization in internal organs of Silky chickens.


Mechanisms of Development | 2004

Mutations affecting early distribution of primordial germ cells in Medaka (Oryzias latipes) embryo

Takao Sasado; Chikako Morinaga; Katsutoshi Niwa; Ai Shinomiya; Akihito Yasuoka; Hiroshi Suwa; Yukihiro Hirose; Hiroki Yoda; Thorsten Henrich; Tomonori Deguchi; Norimasa Iwanami; Tomomi Watanabe; Sanae Kunimatsu; Masakazu Osakada; Yasuko Okamoto; Yasuko Kota; Toshiyuki Yamanaka; Minoru Tanaka; Hisato Kondoh; Makoto Furutani-Seiki

The development of germ cells has been intensively studied in Medaka (Oryzias latipes). We have undertaken a large-scale screen to identify mutations affecting the development of primordial germ cells (PGCs) in Medaka. Embryos derived from mutagenized founder fish were screened for an abnormal distribution or number of PGCs at embryonic stage 27 by RNA in situ hybridization for the Medaka vasa homologue (olvas). At this stage, PGCs coalesce into two bilateral vasa-expressing foci in the ventrolateral regions of the trunk after their migration and group organization. Nineteen mutations were identified from a screen corresponding to 450 mutagenized haploid genomes. Eleven of the mutations caused altered PGC distribution. Most of these alterations were associated with morphological abnormalities and could be grouped into four phenotypic classes: Class 1, PGCs dispersed into bilateral lines; Class 2, PGCs dispersed in a region more medial than that in Class 1; Class 3, PGCs scattered laterally and over the yolk sac area; and Class 4, PGCs clustered in a single median focus. Eight mutations caused a decrease in the number of PGCs. This decrease was observed in the offspring of heterozygous mothers, indicating the contribution of a maternal factor in determining PGC abundance. Taken together, these mutations should prove useful in identifying molecular mechanisms underlying the early PGC development and migration.

Collaboration


Dive into the Ai Shinomiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge