Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aida Capone is active.

Publication


Featured researches published by Aida Capone.


Microbial Ecology | 2010

Mosquito-Bacteria Symbiosis: The Case of Anopheles gambiae and Asaia

Claudia Damiani; Irene Ricci; Elena Crotti; Paolo Rossi; Aurora Rizzi; Patrizia Scuppa; Aida Capone; Ulisse Ulissi; Sara Epis; Marco Genchi; N'Fale Sagnon; Ingrid Faye; Angray S. Kang; Bessem Chouaia; Cheryl Whitehorn; Guelbeogo W. Moussa; Mauro Mandrioli; Fulvio Esposito; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Guido Favia

The symbiotic relationship between Asaia, an α-proteobacterium belonging to the family Acetobacteriaceae, and mosquitoes has been studied mainly in the Asian malaria vector Anopheles stephensi. Thus, we have investigated the nature of the association between Asaia and the major Afro-tropical malaria vector Anopheles gambiae. We have isolated Asaia from different wild and laboratory reared colonies of A. gambiae, and it was detected by PCR in all the developmental stages of the mosquito and in all the specimens analyzed. Additionally, we have shown that it localizes in the midgut, salivary glands and reproductive organs. Using recombinant strains of Asaia expressing fluorescent proteins, we have demonstrated the ability of the bacterium to colonize A. gambiae mosquitoes with a pattern similar to that described for A. stephensi. Finally, fluorescent in situ hybridization on the reproductive tract of females of A. gambiae showed a concentration of Asaia at the very periphery of the eggs, suggesting that transmission of Asaia from mother to offspring is likely mediated by a mechanism of egg-smearing. We suggest that Asaia has potential for use in the paratransgenic control of malaria transmitted by A. gambiae.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2011

Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control

Irene Ricci; Michela Mosca; Matteo Valzano; Claudia Damiani; Patrizia Scuppa; Paolo Rossi; Elena Crotti; Alessia Cappelli; Ulisse Ulissi; Aida Capone; Fulvio Esposito; Alberto Alma; Mauro Mandrioli; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Guido Favia

The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by interfering with the obligatory life cycle stages within the insect through the use of effector molecules. This approach, defined as ‘paratransgenesis’, has opened the way for the investigation and characterization of microbes residing in the mosquito body, particularly those localised within the gut. Some interesting bacteria have been identified as candidates for genetic modification, however, endosymbiotic yeasts remain largely unexplored with little information on the symbiotic relationships to date. Here we review the recent report of symbiotic relationship between Wickerhamomyces anomalus (Pichia anomala) and several mosquito vector species as promising methods to implement control of mosquito-borne diseases.


Environmental Microbiology | 2011

The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi

Irene Ricci; Claudia Damiani; Patrizia Scuppa; Michela Mosca; Elena Crotti; Paolo Rossi; Aurora Rizzi; Aida Capone; Elena Gonella; Patrizia Ballarini; Bessem Chouaia; N'Fale Sagnon; Fulvio Esposito; Alberto Alma; Mauro Mandrioli; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Guido Favia

While symbiosis between bacteria and insects has been thoroughly investigated in the last two decades, investments on the study of yeasts associated with insects have been limited. Insect-associated yeasts are placed on different branches of the phylogenetic tree of fungi, indicating that these associations evolved independently on several occasions. Isolation of yeasts is frequently reported from insect habitats, and in some cases yeasts have been detected in the insect gut and in other organs/tissues. Here we show that the yeast Wickerhamomyces anomalus, previously known as Pichia anomala, is stably associated with the mosquito Anopheles stephensi, a main vector of malaria in Asia. Wickerhamomyces anomalus colonized pre-adult stages (larvae L(1)-L(4) and pupae) and adults of different sex and age and could be isolated in pure culture. By a combination of transmission electron microscopy and fluorescent in situ hybridization techniques, W. anomalus was shown to localize in the midgut and in both the male and female reproductive systems, suggesting multiple transmission patterns.


Parasites & Vectors | 2015

Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors

Paolo Rossi; Irene Ricci; Alessia Cappelli; Claudia Damiani; Ulisse Ulissi; Maria Vittoria Mancini; Matteo Valzano; Aida Capone; Sara Epis; Elena Crotti; Bessem Chouaia; Patrizia Scuppa; Deepak Joshi; Zhiyong Xi; Mauro Mandrioli; Luciano Sacchi; Scott L. O’Neill; Guido Favia

BackgroundWolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes.MethodsDifferent methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species.ResultsHere we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities.ConclusionsA mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.


Parasites & Vectors | 2013

Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in Malaria Symbiotic Control

Aida Capone; Irene Ricci; Claudia Damiani; Michela Mosca; Paolo Rossi; Patrizia Scuppa; Elena Crotti; Sara Epis; Mauro Angeletti; Matteo Valzano; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Mauro Mandrioli; Guido Favia

BackgroundMalaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach.MethodsQuantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains.ResultsUsing quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The ‘in vitro’ immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands.ConclusionsWe have provided important information about the relationship of Asaia with both Plasmodium and Anophele s. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules.


Current Opinion in Microbiology | 2012

Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives

Irene Ricci; Claudia Damiani; Aida Capone; Chenoa DeFreece; Paolo Rossi; Guido Favia

To date around 3500 different species of mosquito have been described, several tens of which are vectors of pathogens of remarkable interest in public health. Mosquitoes are present all around the world showing a great ability to adapt to very different types of habitats where they play relevant ecological roles. It is very likely that components of the mosquito microbiota have given the mosquito a great capacity to adapt to different environments. Current advances in understanding the mosquito-microbiota relationships may have a great impact in a better understanding of some traits of mosquito biology and in the development of innovative mosquito-borne disease-control strategies aimed to reduce mosquito vectorial capacity and/or inhibiting pathogen transmission.


Journal of Applied Entomology | 2011

Mosquito symbioses: from basic research to the paratransgenic control of mosquito-borne diseases

Irene Ricci; Claudia Damiani; Paolo Rossi; Aida Capone; Patrizia Scuppa; Alessia Cappelli; Ulisse Ulissi; Michela Mosca; Matteo Valzano; Sara Epis; Elena Crotti; Daniele Daffonchio; Alberto Alma; Luciano Sacchi; Mauro Mandrioli; Claudio Bandi; Guido Favia

Mosquito‐borne diseases pose significant concerns in public health. Microbial symbionts of mosquitoes are attracting quite a lot of interest in relation to the development of novel strategies aimed to reduce mosquito vectorial capacity with particular regard to paratransgenesis that relies on genetically modified mosquito symbionts to express molecules within the vector able to interfere with parasite development and transmission. Here, we review the present status of the knowledge of mosquito–symbionts relationships, focusing on perspective in the application of symbiotic control in developing an efficient management of mosquito‐borne diseases.


Parasites & Vectors | 2016

Paratransgenesis to control malaria vectors: a semi-field pilot study

Maria Vittoria Mancini; Roberta Spaccapelo; Claudia Damiani; Anastasia Accoti; Mario Tallarita; Elisabetta Petraglia; Paolo Rossi; Alessia Cappelli; Aida Capone; Giulia Peruzzi; Matteo Valzano; Matteo Picciolini; Abdoulaye Diabaté; Luca Facchinelli; Irene Ricci; Guido Favia

BackgroundMalaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments.MethodsLarge cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaiagfp), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaiagfp was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis.ResultsHere we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated.ConclusionsOur results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.


The Journal of Steroid Biochemistry and Molecular Biology | 2015

Environmental pollutants directly affect the liver X receptor alpha activity: Kinetic and thermodynamic characterization of binding

Matteo Mozzicafreddo; Massimiliano Cuccioloni; Laura Bonfili; Valentina Cecarini; Francesco Alessandro Palermo; Paolo Cocci; Gilberto Mosconi; Aida Capone; Irene Ricci; Anna Maria Eleuteri; Mauro Angeletti

Liver X receptor is a ligand-activated transcription factor, which is mainly involved in cholesterol homeostasis, bile acid and triglycerides metabolism, and, as recently discovered, in the glucose metabolism by direct regulation of liver glucokinase. Its modulation by exogenous factors, such as drugs, industrial by-products, and chemicals is documented. Owing to the abundance of these synthetic molecules in the environment, and to the established target role of this receptor, a number of representative compounds of phthalate, organophosphate and fibrate classes were tested as ligands/modulators of human liver X receptor, using an integrated approach, combining an in silico molecular docking technique with an optical SPR biosensor binding study. The compounds of interest were predicted and proved to target the oxysterols-binding site of human LXRα with measurable binding kinetic constants and with affinities ranging between 4.3 × 10(-7) and 4.3 × 10(-8)M. Additionally, non-cytotoxic concentration of these chemicals induced relevant changes in the LXRα gene expression levels and other target genes (SREBP-1c and LGK) in human liver hepatocellular carcinoma cell line (HepG2), as demonstrated by q-RT-PCR.


Environmental Microbiology Reports | 2017

Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination

Jovana Bozic; Aida Capone; Dario Pediconi; Priscilla Mensah; Alessia Cappelli; Matteo Valzano; Maria Vittoria Mancini; Patrizia Scuppa; Elena Martin; Sara Epis; Paolo Rossi; Guido Favia; Irene Ricci

There is still a lack of studies on fungal microbiota in mosquitoes, compared with the number available on bacterial microbiota. This study reports the identification of yeasts of clinical significance in laboratory mosquito species: Anopheles gambiae, Anopheles stephensi, Culex quinquefasciatus, Aedes albopictus and Aedes aegypti. Among the yeasts isolated, they focused on the opportunistic pathogen Candida parapsilosis, since there is a need to better understand breakthrough candidaemia with resistance to the usual antifungals, which requires careful consideration in the broad-spectrum therapy, as documented in many clinical reports. C. parapsilosis occurs widely and has been isolated from diverse sources, including insects, which may contribute to its dissemination. In this study, it was isolated from the gut of An. gambiae and its presence in developmental stages and organs of different mosquito species was studied. Our results indicated that there was a stable association between C. parapsilosis and reared mosquitoes during the entire life cycle, and in adult male and female gut and gonads. A wide occurrence of C. parapsilosis was also documented in several populations of wild mosquitoes. Based on these findings, it can be said that mosquitoes might participate in the spreading of this opportunistic pathogen, not only as a carrier.

Collaboration


Dive into the Aida Capone's collaboration.

Top Co-Authors

Avatar

Irene Ricci

University of Camerino

View shared research outputs
Top Co-Authors

Avatar

Guido Favia

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Rossi

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge