Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Valzano is active.

Publication


Featured researches published by Matteo Valzano.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2011

Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control

Irene Ricci; Michela Mosca; Matteo Valzano; Claudia Damiani; Patrizia Scuppa; Paolo Rossi; Elena Crotti; Alessia Cappelli; Ulisse Ulissi; Aida Capone; Fulvio Esposito; Alberto Alma; Mauro Mandrioli; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Guido Favia

The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by interfering with the obligatory life cycle stages within the insect through the use of effector molecules. This approach, defined as ‘paratransgenesis’, has opened the way for the investigation and characterization of microbes residing in the mosquito body, particularly those localised within the gut. Some interesting bacteria have been identified as candidates for genetic modification, however, endosymbiotic yeasts remain largely unexplored with little information on the symbiotic relationships to date. Here we review the recent report of symbiotic relationship between Wickerhamomyces anomalus (Pichia anomala) and several mosquito vector species as promising methods to implement control of mosquito-borne diseases.


Pathogens and Global Health | 2012

Symbiotic control of mosquito borne disease.

Irene Ricci; Matteo Valzano; Ulisse Ulissi; Sara Epis; Alessia Cappelli; Guido Favia

Abstract It is well accepted that the symbiotic relationships insects have established with several microorganisms have had a key role in their evolutionary success. Bacterial symbiosis is also prevalent in insects that are efficient disease vectors, and numerous studies have sought to decrypt the basic mechanisms of the host–symbiont relationships and develop ways to control vector borne diseases. ‘Symbiotic control’, a new multifaceted approach that uses symbiotic microorganisms to control insect pests or reduce vector competence, seems particularly promising. Three such approaches currently at the cutting edge are: (1) the disruption of microbial symbionts required by insect pests; (2) the manipulation of symbionts that can express anti-pathogen molecules within the host; and (3) the introduction of endogenous microbes that affect life-span and vector capacity of the new hosts in insect populations. This work reviews current knowledge on microbial symbiosis in mosquitoes that holds promise for development of symbiotic control for mosquito borne diseases.


Parasites & Vectors | 2015

Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors

Paolo Rossi; Irene Ricci; Alessia Cappelli; Claudia Damiani; Ulisse Ulissi; Maria Vittoria Mancini; Matteo Valzano; Aida Capone; Sara Epis; Elena Crotti; Bessem Chouaia; Patrizia Scuppa; Deepak Joshi; Zhiyong Xi; Mauro Mandrioli; Luciano Sacchi; Scott L. O’Neill; Guido Favia

BackgroundWolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes.MethodsDifferent methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species.ResultsHere we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities.ConclusionsA mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.


Parasites & Vectors | 2013

Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in Malaria Symbiotic Control

Aida Capone; Irene Ricci; Claudia Damiani; Michela Mosca; Paolo Rossi; Patrizia Scuppa; Elena Crotti; Sara Epis; Mauro Angeletti; Matteo Valzano; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Mauro Mandrioli; Guido Favia

BackgroundMalaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach.MethodsQuantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains.ResultsUsing quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The ‘in vitro’ immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands.ConclusionsWe have provided important information about the relationship of Asaia with both Plasmodium and Anophele s. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules.


Journal of Applied Entomology | 2011

Mosquito symbioses: from basic research to the paratransgenic control of mosquito-borne diseases

Irene Ricci; Claudia Damiani; Paolo Rossi; Aida Capone; Patrizia Scuppa; Alessia Cappelli; Ulisse Ulissi; Michela Mosca; Matteo Valzano; Sara Epis; Elena Crotti; Daniele Daffonchio; Alberto Alma; Luciano Sacchi; Mauro Mandrioli; Claudio Bandi; Guido Favia

Mosquito‐borne diseases pose significant concerns in public health. Microbial symbionts of mosquitoes are attracting quite a lot of interest in relation to the development of novel strategies aimed to reduce mosquito vectorial capacity with particular regard to paratransgenesis that relies on genetically modified mosquito symbionts to express molecules within the vector able to interfere with parasite development and transmission. Here, we review the present status of the knowledge of mosquito–symbionts relationships, focusing on perspective in the application of symbiotic control in developing an efficient management of mosquito‐borne diseases.


PLOS ONE | 2014

A Wickerhamomyces anomalus killer strain in the malaria vector Anopheles stephensi

Alessia Cappelli; Ulisse Ulissi; Matteo Valzano; Claudia Damiani; Sara Epis; Maria Gabriella Gabrielli; Stefania Conti; Luciano Polonelli; Claudio Bandi; Guido Favia; Irene Ricci

The yeast Wickerhamomyces anomalus has been investigated for several years for its wide biotechnological potential, especially for applications in the food industry. Specifically, the antimicrobial activity of this yeast, associated with the production of Killer Toxins (KTs), has attracted a great deal of attention. The strains of W. anomalus able to produce KTs, called “killer” yeasts, have been shown to be highly competitive in the environment. Different W. anomalus strains have been isolated from diverse habitats and recently even from insects. In the malaria mosquito vector Anopheles stephensi these yeasts have been detected in the midgut and gonads. Here we show that the strain of W. anomalus isolated from An. stephensi, namely WaF17.12, is a killer yeast able to produce a KT in a cell-free medium (in vitro) as well as in the mosquito body (in vivo). We showed a constant production of WaF17.12-KT over time, after stimulation of toxin secretion in yeast cultures and reintroduction of the activated cells into the mosquito through the diet. Furthermore, the antimicrobial activity of WaF17.12-KT has been demonstrated in vitro against sensitive microbes, showing that strain WaF17.12 releases a functional toxin. The mosquito-associated yeast WaF17.12 thus possesses an antimicrobial activity, which makes this yeast worthy of further investigations, in view of its potential as an agent for the symbiotic control of malaria.


Parasites & Vectors | 2016

Paratransgenesis to control malaria vectors: a semi-field pilot study

Maria Vittoria Mancini; Roberta Spaccapelo; Claudia Damiani; Anastasia Accoti; Mario Tallarita; Elisabetta Petraglia; Paolo Rossi; Alessia Cappelli; Aida Capone; Giulia Peruzzi; Matteo Valzano; Matteo Picciolini; Abdoulaye Diabaté; Luca Facchinelli; Irene Ricci; Guido Favia

BackgroundMalaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments.MethodsLarge cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaiagfp), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaiagfp was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis.ResultsHere we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated.ConclusionsOur results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.


Medical and Veterinary Entomology | 2014

Detection and isolation of the α-proteobacterium Asaia in Culex mosquitoes.

C. De Freece; Claudia Damiani; Matteo Valzano; S. D'amelio; Alessia Cappelli; Irene Ricci; Guido Favia

Investigations of microbiota within mosquitoes continue to widen the spectrum of possible symbiont‐based applications against vector‐borne diseases. In this context, α‐proteobacteria of the genus Asaia (Rhodospirillales: Acetobacteraceae) are emerging as possible endosymbiotic candidates, particularly in paratransgenic approaches aimed at interrupting pathogen transmission. Previous studies have shown that Asaia spp. distribution among Anopheles gambiae and Anopheles stephensi (Diptera: Culicidae) mosquitoes displayed positive rates of infection in isolated midguts, salivary glands and reproductive tissues. Similarly, Asaia has been detected in Aedes albopictus (Stegomyia albopicta) and Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) populations. Within the Culex pipiens complex (Diptera: Culicidae), Asaia infection is still largely unexplored. Here, we summarize a preliminary survey of laboratory‐reared Cx. pipiens complex and field‐collected Culex quinquefasciatus for the presence of Asaia spp., and present the first identification of Asaia in some of the members of the Cx. pipiens complex and the first description in West African populations of Cx. quinquefasciatus.


Environmental Microbiology Reports | 2017

Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination

Jovana Bozic; Aida Capone; Dario Pediconi; Priscilla Mensah; Alessia Cappelli; Matteo Valzano; Maria Vittoria Mancini; Patrizia Scuppa; Elena Martin; Sara Epis; Paolo Rossi; Guido Favia; Irene Ricci

There is still a lack of studies on fungal microbiota in mosquitoes, compared with the number available on bacterial microbiota. This study reports the identification of yeasts of clinical significance in laboratory mosquito species: Anopheles gambiae, Anopheles stephensi, Culex quinquefasciatus, Aedes albopictus and Aedes aegypti. Among the yeasts isolated, they focused on the opportunistic pathogen Candida parapsilosis, since there is a need to better understand breakthrough candidaemia with resistance to the usual antifungals, which requires careful consideration in the broad-spectrum therapy, as documented in many clinical reports. C. parapsilosis occurs widely and has been isolated from diverse sources, including insects, which may contribute to its dissemination. In this study, it was isolated from the gut of An. gambiae and its presence in developmental stages and organs of different mosquito species was studied. Our results indicated that there was a stable association between C. parapsilosis and reared mosquitoes during the entire life cycle, and in adult male and female gut and gonads. A wide occurrence of C. parapsilosis was also documented in several populations of wild mosquitoes. Based on these findings, it can be said that mosquitoes might participate in the spreading of this opportunistic pathogen, not only as a carrier.


Archive | 2012

Facing Malaria Parasite with Mosquito Symbionts

Guido Favia; Irene Ricci; Patrizia Scuppa; Claudia Damiani; Paolo Rossi; Aida Capone; Chenoa De Freece; Matteo Valzano; Alessia Cappelli; Michela Mosca; Ulisse Ulissi

Microbial symbiosis is an ubiquitous aspect of insect life and plays a fundamental role in the adaptation of insects to the most diverse environments. A very large proportion of insects are supposed to carry bacterial symbionts (Chaves et al., 2009). The variety of the relationships between symbionts and insects are very wide as well as biological function exerted by the symbionts and their localisation within the host. In fact, some are located within host cells while some others are outside. The genetic modification of microbial symbionts has been identified as novel tools to fight insect pests and vectors of infectious diseases. In this frame, in the last years, the use of manipulated symbiont has attracted a lot of attention for the potential application in the control of mosquito-borne diseases, with particular interest to malaria control.

Collaboration


Dive into the Matteo Valzano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Ricci

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aida Capone

University of Camerino

View shared research outputs
Top Co-Authors

Avatar

Paolo Rossi

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge