Aida Karray
University of Sfax
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aida Karray.
Toxicon | 2009
Raoudha Zouari-Kessentini; José Luis; Aida Karray; Olfa Kallech-Ziri; Najet Srairi-Abid; Amine Bazaa; Erwann P. Loret; Sofiane Bezzine; Mohamed El Ayeb; Naziha Marrakchi
Two non-toxic PLA2s were purified to homogeneity from Cerastes cerastes Tunisian snake venom. The purification process employed gel filtration on Sephadex G-75 followed by C18 reverse phase high-pressure liquid chromatography. These two acidic enzymes, namely CC-PLA2-1 and CC-PLA2-2, have a molecular weight of 13,737.52 and 13,705.63 Da, respectively. These two PLA2 are the first reported glycosylated phospholipases A2 purified from snake venom. The rates of glycosylation are 2.5% and 0.5% (w/w), respectively. Specific activities of 1800 U/mg and 2400 U/mg for CC-PLA2-1 and CC-PLA2-2, respectively, were measured at optimal conditions. CC-PLA2-1 and CC-PLA2-2 strongly inhibited coagulation. They also exhibited a marked dose-dependent inhibitory effect on platelet aggregation induced by ADP and arachidonic acid in platelet-rich plasma. Interestingly, CC-PLA2-1 and CC-PLA2-2 inhibited in a dose-dependent manner adhesion of IGR39 melanoma and HT1080 fibrosarcoma cells to fibrinogen and fibronectin. Furthermore, both CC-PLA2-1 and CC-PLA2-2 abolished HT1080 cell migration towards fibrinogen and fibronectin. This activity is reported for the first time for PLA2 enzymes.
FEBS Journal | 2009
Aida Karray; Fakher Frikha; Abir Ben Bacha; Yassine Ben Ali; Youssef Gargouri; Sofiane Bezzine
Chicken pancreatic phospholipase A2 (ChPLA2) was purified from delipidated pancreases using ammonium sulfate and ethanol precipitation, followed by sequential column chromatography steps on MonoQ Sepharose and size exclusion HPLC columns. ChPLA2 was found to be a nonglycosylated monomeric protein with a molecular mass of 14 kDa and a specific activity of 400 U·mg−1 in the presence of 1 mm sodium taurodeoxycholate and 4 mm CaCl2 with phosphatidylcholine as substrate. The N‐terminal sequence of the first 15 amino acids of ChPLA2 was determined, and showed a high degree of homology with known mammal pancreatic phospholipases A2. The gene encoding the mature ChPLA2 was cloned and sequenced. The deduced amino acid sequence of the mature ChPLA2 confirmed the high level of identity with mammal pancreatic PLA2. To investigate the structure–activity relationships, a 3D model of group IB ChPLA2 was built using the porcine pancreatic phospholipase A2 structure as template.
Lipids in Health and Disease | 2011
Abir Ben Bacha; Aida Karray; Emna Bouchaala; Youssef Gargouri; Yassine Ben Ali
BackgroundMammalian sPLA2-IB are well characterized. In contrast, much less is known about aquatic ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes.ResultsA marine stingray phospholipase A2 (SPLA2) was purified from delipidated pancreas. Purified SPLA2, which is not glycosylated protein, was found to be monomeric protein with a molecular mass of 14 kDa. A specific activity of 750 U/mg for purified SPLA2 was measured at optimal conditions (pH 8.5 and 40 °C) in the presence of 4 mM NaTDC and 8 mM CaCl2 using PC as substrate. The sequence of the first twenty first amino-acid residues at the N-terminal extremity of SPLA2 was determined and shows a close similarity with known mammal and bird pancreatic secreted phospholipases A2. SPLA2 stability in the presence of organic solvents, as well as in acidic and alkaline pH and at high temperature makes it a good candidate for its application in food industry.ConclusionsSPLA2 has several advantageous features for industrial applications. Stability of SPLA2 in the presence of organic solvents, and its tolerance to high temperatures, basic and acidic pH, makes it a good candidate for application in food industry to treat phospholipid-rich industrial effluents, or to synthesize useful chemical compounds.
Lipids in Health and Disease | 2011
Aida Karray; Yassine Ben Ali; Youssef Gargouri; Sofiane Bezzine
BackgroundThe presence of chicken group-IIA PLA2 (ChPLA2-IIA) in the intestinal secretion suggests that this enzyme plays an important role in systemic bactericidal defence. We have analyzed the bactericidal activity of purified ChPLA2-IIA, on several gram-positive and gram-negative bacteria by using the diffusion well and dilution methods.ResultsChPLA2-IIA displays potent bactericidal activity against gram-positive bacteria but lacks bactericidal activity against gram negative ones. We have also demonstrated a synergic action of ChPLA2-IIA with lysozyme when added to the bacteria culture prior to ChPLA2-IIA. The bactericidal efficiency of ChPLA2-IIA was shown to be dependent upon the presence of calcium ions and then a correlation could be made to its hydrolytic activity of membrane phospholipids. Interestingly ChPLA2-IIA displays a higher dependence to Ca2+ ions than to Mg2+ions.ConclusionWe conclude that the main physiological role of ChPLA2-IIA could be the defence of the intestine against bacterial invasions.
Lipids in Health and Disease | 2011
Madiha Bou Ali; Yassine Ben Ali; Aida Karray; Ahmed Fendri; Youssef Gargouri
BackgroundThe turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Some biochemical properties and kinetic studies were determined using emulsified system and monomolecular film techniques. Those studies have shown that despite the accumulation of free fatty acids at the olive oil/water interface, TPL continues to hydrolyse efficiently the olive oil and the TC4 in the absence of colipase and bile salts, contrary to most classical digestive lipases which denaturate rapidly under the same conditions. The aim of the present study was to express TPL in the methylotrophic yeast Pichia pastoris in order to get a large amount of this enzyme exhibiting interesting biochemical properties, to purify and characterize the recombinant enzyme.ResultsThe recombinant TPL was secreted into the culture medium and the expression level reached about 15 mg/l after 4 days of culture. Using Q-PCR, the number of expression cassette integrated on Pichia genomic DNA was estimated to 5. The purified rTPL, with molecular mass of 50 kDa, has a specific activity of 5300 U/mg on emulsified olive oil and 9500 U/mg on tributyrin. The optimal temperature and pH of rTPL were 37°C and pH 8.5. The stability, reaction kinetics and effects of calcium ions and bile salts were also determined.ConclusionsOur results show that the expressed TPL have the same properties as the native TPL previously purified. This result allows us the use of the recombinant enzyme to investigate the TPL structure-function relationships.
International Journal of Biological Macromolecules | 2013
Aida Karray; Sawsan Amara; Frédéric Carrière; Youssef Gargouri; Sofiane Bezzine
The cDNA coding for a mature protein of 123 amino acids, containing all of the structural features of catalytically active group II sPLA2, has been amplified. The gene has been cloned into the bacterial expression vector pET-21a(+), which allows protein over-expression as inclusion bodies and enables about 3 mg per litre of pure refolded fully active enzyme to be obtained. Recombinant expression of chPLA2-IIA in Escherichia coli shows that the enzyme is Ca(2+) dependent, maximally active at pH 8-9, and hydrolyses phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference. The ability to express reasonably large amounts of the sPLA2 Group IIA, compared to that obtained with the classical purification will provide a basis for future site directed mutagenesis studies of this important enzyme.
Lipids in Health and Disease | 2011
Abir Ben Bacha; Aida Karray; Lobna Daoud; Emna Bouchaala; Madiha Bou Ali; Youssef Gargouri; Yassine Ben Ali
BackgroundPancreatic colipase is a required co-factor for pancreatic lipase, being necessary for its activity during hydrolysis of dietary triglycerides in the presence of bile salts. In the intestine, colipase is cleaved from a precursor molecule, procolipase, through the action of trypsin. This cleavage yields a peptide called enterostatin knoswn, being produced in equimolar proportions to colipase.ResultsIn this study, colipase from the common stingray Dasyatis pastinaca (CoSPL) was purified to homogeneity. The purified colipase is not glycosylated and has an apparent molecular mass of around 10 kDa. The NH2-terminal sequencing of purified CoSPL exhibits more than 55% identity with those of mammalian, bird or marine colipases. CoSPL was found to be less effective activator of bird and mammal pancreatic lipases than for the lipase from the same specie. The apparent dissociation constant (Kd) of the colipase/lipase complex and the apparent Vmax of the colipase-activated lipase values were deduced from the linear curves of the Scatchard plots. We concluded that Stingray Pancreatic Lipase (SPL) has higher ability to interact with colipase from the same species than with the mammal or bird ones.ConclusionThe fact that colipase is a universal lipase cofactor might thus be explained by a conservation of the colipase-lipase interaction site. The results obtained in the study may improve our knowledge of marine lipase/colipase.
Biochimie | 2012
Aida Karray; Yassine Ben Ali; Jamil Boujelben; Sawsan Amara; Frédéric Carrière; Youssef Gargouri; Sofiane Bezzine
Abstract Infectious bronchitis is one of the most important diseases in poultry and it causes major economic losses. Infectious bronchitis is an acute, highly contagious, viral disease of chickens, characterized by rales, coughing, and sneezing. Because secreted phospholipases A2 (sPLA2) are involved in inflammatory processes, the gene expressions of sPLA2s were investigated in both healthy chickens and chickens with infectious bronchitis and lung inflammation. The draft chicken genome was first scanned using human sPLA2 sequences to identify chicken sPLA2s (ChPLA2), chicken total mRNA were isolated and RT-PCR experiments were performed to amplify and then sequence orthologous cDNAs. Full-length cDNA sequences of ChPLA2-IB, -IIA, -IIE, -V and -X were cloned. The high degree of sequence identity of 50–70% between the avian and mammalian (human and mouse) sPLA2 orthologs suggests a conservation of important enzymatic functions for these phospholipases. Quantitation by qPCR of the transcript levels of ChPLA2-IB, -IIA, -IIE, -V and -X in several tissues from healthy chicken indicated that the expression patterns and mRNA levels diverged among the phospholipases tested. In chicken with infectious bronchitis, an over expression of ChPLA2-V was observed in lungs and spleen in comparison with healthy chicken. These findings suggest that ChPLA2-V could be a potential biomarker for lung inflammation. Conversely, a down regulation of ChPLA2-IB, -IIA and -X was observed in lungs and spleen in case of infectious bronchitis. A significant increase in the expression level of ChPLA2-X and ChPLA2-IB was also noticed in pancreas. No or minor changes have been detected in the expression of ChPLA2-IIE in lungs and small intestine, but it shows a significant increase in several infected tissues.
Lipids in Health and Disease | 2011
Zied Zarai; Nicholas Boulais; Aida Karray; L. Misery; Sofiane Bezzine; Tarek Rebai; Youssef Gargouri; Hafedh Mejdoub
BackgroundMammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food.ResultsThe marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells.ConclusionThe cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids.
International Journal of Biological Macromolecules | 2018
Abir Ben Bacha; Mona Awad Alonazi; Mohamed Solman Elshikh; Aida Karray
A novel non-toxic phospholipase A2 was purified to homogeneity in a single chromatography step from the venom of Walterinnesia aegyptia, a monotypic elapid snake caught in Saudi Arabia, and its antimicrobial and hemolytic properties were evaluated as well. This enzyme, namely WaPLA2, is a homodimer with an estimated molecular mass of 30 kDa, and its NH2-terminal sequence exhibits a significant degree of similarity with PLA2 group-I. At optimal pH (8.5) and temperature (45 °C), the purified PLA2 exhibited a specific activity of 2100 U/mg, and it requires bile salts and Ca2+ for its activity. However, other cations such as Cd2+ and Hg2+ diminished the enzyme activity remarkably, thereby suggesting that the catalytic site arrangement has an exclusive structure for Ca2+ binding. Furthermore, WaPLA2 maintained almost 100% and 60% of its full activity in a pH range of 6.0-10 after 24 h incubation or after 60 min treatment at 70 °C, respectively. In the biological activity assays, WaPLA2 displayed potent indirectly hemolytic and antimicrobial activities that were strongly correlated. These promising findings encourage further in-depth research to understand the molecular mechanism of WaPLA2s antimicrobial properties for its possible use as a potential therapeutic lead molecule for treating infections.