Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yassine Ben Ali is active.

Publication


Featured researches published by Yassine Ben Ali.


Methods of Molecular Biology | 2012

Phospholipases: An Overview

Ahmed Aloulou; Yassine Ben Ali; Sofiane Bezzine; Youssef Gargouri; Michael H. Gelb

Phospholipids are present in all living organisms. They are a major component of all biological membranes, along with glycolipids and cholesterol. Enzymes aimed at cleaving the various bonds in phospholipids, namely phospholipases, are consequently widespread in nature, playing very diverse roles from aggression in snake venom to signal transduction, lipid mediators production, and digestion in humans. Although all phospholipases target phospholipids as substrates, they vary in the site of action on the phospholipids molecules, physiological function, mode of action, and their regulation. Significant studies on phospholipases characterization, physiological role, and industrial potential have been conducted worldwide. Some of them have been directed for biotechnological advances, such as gene discovery and functional enhancement by protein engineering. Others reported phospholipases as virulence factors and major causes of pathophysiological effects. In this introductory chapter, we provide brief details of different phospholipases.


Methods of Molecular Biology | 2012

Lipases or Esterases: Does It Really Matter? Toward a New Bio-Physico-Chemical Classification

Yassine Ben Ali; Robert Verger; Abdelkarim Abousalham

Carboxylester hydrolases, commonly named esterases, consist of a large spectrum of enzymes defined by their ability to catalyze the hydrolysis of carboxylic ester bonds and are widely distributed among animals, plants, and microorganisms. Lipases are lipolytic enzymes which constitute a special class of carboxylic esterases capable of releasing long-chain fatty acids from natural water-insoluble carboxylic esters. However, up to now, several unsuccessful attempts aimed at differentiating lipases from esterases by using various criteria. These criteria were based on the first substrate used chronologically, primary sequence comparisons, some kinetic parameters, or some structural features.Lipids are biological compounds which, by definition, are insoluble in water. Taking into account this basic physico-chemical criterion, we primarily distinguish lipolytic esterases (L, acting on lipids) from nonlipolytic esterases (NL, not acting on lipids). In view of the biochemical data accumulated up to now, we proposed a new classification of esterases based on various criteria of physico-chemical, chemical, anatomical, or cellular nature. We believe that the present attempt matters scientifically for several reasons: (1) to help newcomers in the field, performing a few key experiments to figure out if a newly isolated esterase is lipolytic or not; (2) to clarify a debate between scientists in the field; and (3) to formulate questions which are relevant to the still unsolved problem of the structure-function relationships of esterases.


International Journal of Biological Macromolecules | 2013

Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase

Lobna Daoud; Jannet Kamoun; Madiha Bou Ali; Raida Jallouli; Rim Bradai; Tahar Mechichi; Youssef Gargouri; Yassine Ben Ali; Ahmed Aloulou

We have isolated a lipolytic halotolerant bacterium, designated as CJ3, that was identified as a Staphylococcus sp. Culture conditions were optimized and the highest extracellular lipase production amounting to 5 U/ml was achieved after 24 h of cultivation. The extracellular lipase was purified 24-fold by ammonium sulfate precipitation and a Sephacryl S-200 chromatography, and its molecular mass was found to be around 38 kDa, as revealed by SDS-PAGE and gel filtration. The lipase substrate specificity was investigated using short (tributyrin) and long (olive oil) chain triglyceride substrates. The lipase was inhibited by submicellar concentrations of Triton X-100, and maximum specific activities were found to be 802 U/mg on tributyrin and 260 U/mg on olive oil at pH 8.0 and 45 °C. The lipase was fairly stable in the pH range from 6.0 to 9.0, and about 69% of its activity was retained after incubation at 45 °C for 60 min. The enzyme showed a high tolerance to a wide range of salt concentration and a good stability in organic solvents, especially in long-chain alcohols.


Lipids in Health and Disease | 2011

In vitro study of the PLA2 inhibition and antioxidant activities of Aloe vera leaf skin extracts

Maher Kammoun; Sonia Miladi; Yassine Ben Ali; Mohamed Damak; Youssef Gargouri; Sofiane Bezzine

BackgroundIn the present work we determined the total phenolic content of Aloe vera leaf skin (AVLS) extracts by using various solvents (hexane, chloroform-ethanol (1/1), ethyl acetate, butanol and water). We have also evaluated the antioxidant and the anti-PLA2 properties of these extracts by measuring their inhibition potency on the human pro-inflammatory phospholipase A2 (group IIA).ResultsThe water extract exhibits the highest inhibitory effect with an IC50 = 0.22 mg/ml and interestingly no effect was observed on the digestive phospholipase A2 (group IB) even at a concentration of 5 mg/ml. Antioxidant activities were also analyzed and the most active extracts were observed when using chloroform ethanol (1/1) and ethyl acetate (IC50 = 0.274 and 0.326 mg/ml, respectively). Analysis of the total phenolic content reveals that the water extract, with the best anti-PLA2 effect, was poor in phenolic molecules (2 mg GAE/g). This latter value has to be compared with the chloroform-ethanol and the ethyl acetate extracts (40 and 23.8 mg GAE/g, respectively), mostly responsible for the antioxidant activity.ConclusionA significant correlation was established between the total phenolic content and the antioxidant capacity but not with the anti PLA2 activity. Results from phytochemical screening suggest that the anti PLA2 molecules were probably catechin tannins compounds.


Lipids in Health and Disease | 2011

Purification and biochemical characterization of pancreatic phospholipase A2 from the common stingray Dasyatis pastinaca

Abir Ben Bacha; Aida Karray; Emna Bouchaala; Youssef Gargouri; Yassine Ben Ali

BackgroundMammalian sPLA2-IB are well characterized. In contrast, much less is known about aquatic ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes.ResultsA marine stingray phospholipase A2 (SPLA2) was purified from delipidated pancreas. Purified SPLA2, which is not glycosylated protein, was found to be monomeric protein with a molecular mass of 14 kDa. A specific activity of 750 U/mg for purified SPLA2 was measured at optimal conditions (pH 8.5 and 40 °C) in the presence of 4 mM NaTDC and 8 mM CaCl2 using PC as substrate. The sequence of the first twenty first amino-acid residues at the N-terminal extremity of SPLA2 was determined and shows a close similarity with known mammal and bird pancreatic secreted phospholipases A2. SPLA2 stability in the presence of organic solvents, as well as in acidic and alkaline pH and at high temperature makes it a good candidate for its application in food industry.ConclusionsSPLA2 has several advantageous features for industrial applications. Stability of SPLA2 in the presence of organic solvents, and its tolerance to high temperatures, basic and acidic pH, makes it a good candidate for application in food industry to treat phospholipid-rich industrial effluents, or to synthesize useful chemical compounds.


Lipids in Health and Disease | 2011

Purification and biochemical characterization of a secreted group IIA chicken intestinal phospholipase A2

Aida Karray; Fakher Frikha; Yassine Ben Ali; Youssef Gargouri; Sofiane Bezzine

BackgroundSecretory phospholipase A2 group IIA (IIA PLA2) is a protein shown to be highly expressed in the intestine of mammals. However, no study was reported in birds.ResultsChicken intestinal group IIA phospholipase A2 (ChPLA2-IIA) was obtained after an acidic treatment (pH.3.0), precipitation by ammonium sulphate, followed by sequential column chromatographies on Sephadex G-50 and mono-S ion exchanger. The enzyme was found to be a monomeric protein with a molecular mass of around 14 kDa. The purified enzyme showed a substrate preference for phosphatidylethanolamine and phosphatidylglycerol, and didnt hydrolyse phosphatidylcholine. Under optimal assay conditions, in the presence of 10 mM NaTDC and 10 mM CaCl2, a specific activity of 160 U.mg-1 for purified ChPLA2-IIA was measured using egg yolk as substrate. The fifteen NH2-terminal amino acid residues of ChPLA2-IIA were sequenced and showed a close homology with known intestinal secreted phospholipases A2. The gene encoding the mature ChPLA2-IIA was cloned and sequenced. To further investigate structure-activity relationship, a 3D model of ChPLA2-IIA was built using the human intestinal phospholipase A2 structure as template.ConclusionChPLA2-IIA was purified to homogeneity using only two chromatographic colomns. Sequence analysis of the cloned cDNA indicates that the enzyme is highly basic with a pI of 9.0 and has a high degree of homology with mammalian intestinal PLA2-IIA.


Lipids in Health and Disease | 2011

Antibacterial properties of chicken intestinal phospholipase A2

Aida Karray; Yassine Ben Ali; Youssef Gargouri; Sofiane Bezzine

BackgroundThe presence of chicken group-IIA PLA2 (ChPLA2-IIA) in the intestinal secretion suggests that this enzyme plays an important role in systemic bactericidal defence. We have analyzed the bactericidal activity of purified ChPLA2-IIA, on several gram-positive and gram-negative bacteria by using the diffusion well and dilution methods.ResultsChPLA2-IIA displays potent bactericidal activity against gram-positive bacteria but lacks bactericidal activity against gram negative ones. We have also demonstrated a synergic action of ChPLA2-IIA with lysozyme when added to the bacteria culture prior to ChPLA2-IIA. The bactericidal efficiency of ChPLA2-IIA was shown to be dependent upon the presence of calcium ions and then a correlation could be made to its hydrolytic activity of membrane phospholipids. Interestingly ChPLA2-IIA displays a higher dependence to Ca2+ ions than to Mg2+ions.ConclusionWe conclude that the main physiological role of ChPLA2-IIA could be the defence of the intestine against bacterial invasions.


PLOS ONE | 2014

Eukaryotic Expression System Pichia pastoris Affects the Lipase Catalytic Properties: A Monolayer Study

Madiha Bou Ali; Yassine Ben Ali; Imen Aissa; Youssef Gargouri

Recombinant DNA methods are being widely used to express proteins in both prokaryotic and eukaryotic cells for both fundamental and applied research purposes. Expressed protein must be well characterized to be sure that it retains the same properties as the native one, especially when expressed protein will be used in the pharmaceutical field. In this aim, interfacial and kinetic properties of native, untagged recombinant and tagged recombinant forms of a pancreatic lipase were compared using the monomolecular film technique. Turkey pancreatic lipase (TPL) was chosen as model. A kinetic study on the dependence of the stereoselectivity of these three forms on the surface pressure was performed using three dicaprin isomers spread in the form of monomolecular films at the air-water interface. The heterologous expression and the N-His-tag extension were found to modify the pressure preference and decrease the catalytic hydrolysis rate of three dicaprin isomers. Besides, the heterologous expression was found to change the TPL regioselectivity without affecting its stereospecificity contrary to the N-tag extension which retained that regioselectivity and changed the stereospecificity at high surface pressures. The study of parameters, termed Recombinant expression Effects on Catalysis (REC), N-Tag Effects on Catalysis (TEC), and N-Tag and Recombinant expression Effects on Catalysis (TREC) showed that the heterologous expression effects on the catalytic properties of the TPL were more deleterious than the presence of an N-terminal tag extension.


Lipids in Health and Disease | 2011

Purification and characterization of the first recombinant bird pancreatic lipase expressed in Pichia pastoris: The turkey

Madiha Bou Ali; Yassine Ben Ali; Aida Karray; Ahmed Fendri; Youssef Gargouri

BackgroundThe turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Some biochemical properties and kinetic studies were determined using emulsified system and monomolecular film techniques. Those studies have shown that despite the accumulation of free fatty acids at the olive oil/water interface, TPL continues to hydrolyse efficiently the olive oil and the TC4 in the absence of colipase and bile salts, contrary to most classical digestive lipases which denaturate rapidly under the same conditions. The aim of the present study was to express TPL in the methylotrophic yeast Pichia pastoris in order to get a large amount of this enzyme exhibiting interesting biochemical properties, to purify and characterize the recombinant enzyme.ResultsThe recombinant TPL was secreted into the culture medium and the expression level reached about 15 mg/l after 4 days of culture. Using Q-PCR, the number of expression cassette integrated on Pichia genomic DNA was estimated to 5. The purified rTPL, with molecular mass of 50 kDa, has a specific activity of 5300 U/mg on emulsified olive oil and 9500 U/mg on tributyrin. The optimal temperature and pH of rTPL were 37°C and pH 8.5. The stability, reaction kinetics and effects of calcium ions and bile salts were also determined.ConclusionsOur results show that the expressed TPL have the same properties as the native TPL previously purified. This result allows us the use of the recombinant enzyme to investigate the TPL structure-function relationships.


Environmental Science and Pollution Research | 2015

Maneb disturbs expression of superoxide dismutase and glutathione peroxidase, increases reactive oxygen species production, and induces genotoxicity in liver of adult mice.

Ibtissem Ben Amara; Hajer Ben Saad; Latifa Hamdaoui; Aida Karray; Tahia Boudawara; Yassine Ben Ali; Najiba Zeghal

Maneb (MB), a fungicide largely used in agriculture throughout the world including Tunisia, protects many vegetables, fruits and field crops against a wide spectrum of fungal diseases. However there is a lack of informations regarding the risks arising from MB exposure on non target organisms, especially mammals. The aim of this study was to investigate the morphological, biochemical and molecular aspects of liver injury after exposure of mice to MB. Four doses of MB corresponding to 1/8 (group D1), 1/6 (group D2), 1/4 (group D3), and 1/2 (group D4) of lethal dose (DL50u2009=u20091500xa0mg/kg body weight) were administered to adult mice. Oxidative stress parameters were also objectified by molecular and histological endpoints in the liver. Maneb caused hepatotoxicity as characterized by the significant increase in the levels of malondialdehyde and protein oxidation marker, advanced oxidation protein products (AOPP). The activities of catalase, glutathione peroxidase, superoxide dismutase and the levels of glutathione decreased significantly in all treated mice, while vitamin C levels decreased only in group D4. We also noted a significant decrease in gene expression of superoxide dismutase and glutathione peroxidase enzymes. Maneb caused nucleic acids degradation testifying its genotoxicity. Yet, biochemical markers in plasma showed a decrease in total protein and an increase in aspartate, alanine amino transferases and bilirubin levels in all treatment groups. Moreover, plasma levels of cholesterol, triglycerides and low density lipoprotein–cholesterol significantly increased, while those of high density lipoprotein–cholesterol decreased. These biochemical alterations were correlated with significantly histological changes. Our data showed, for the first time, that intraperitoneal injection of very high non environmentally relevant MB concentrations to adult mice resulted in oxidative stress leading to hepatotoxicity and the impairment of defense systems, confirming the pro-oxidant and genotoxic effects of this fungicide.

Collaboration


Dive into the Yassine Ben Ali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge