Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aiko Voigt is active.

Publication


Featured researches published by Aiko Voigt.


The Astrophysical Journal | 2012

THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

Nicolas B. Cowan; Aiko Voigt; Dorian S. Abbot

In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth-analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like modern Earth), and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The temperate obliquity seasons are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal lightcurves as they would appear to a highcontrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are 1) obliquity seasons, 2) diurnal cycle, and 3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer would measure peak-to-trough amplitudes of 13% and 47% for the temperate and snowball climates, respectively. Diurnal heating is important for equatorial observers (∼ 5% phase variations), because the obliquity effects cancel to first order from that vantage. Finally, we compare the prospects of optical vs. thermal direct imaging missions for constraining the climate on exoplanets and conclude that while zero- and one-dimensional models are best served by thermal measurements, second-order models accounting for seasons and planetary thermal inertia would require both optical and thermal observations.


Science Advances | 2017

Snowball Earth climate dynamics and Cryogenian geology-geobiology

Paul F. Hoffman; Dorian S. Abbot; Yosef Ashkenazy; Douglas I. Benn; Jochen J. Brocks; Phoebe A. Cohen; Grant M. Cox; Jessica R. Creveling; Yannick Donnadieu; Douglas H. Erwin; Ian J. Fairchild; David Ferreira; Jason C. Goodman; Galen P. Halverson; Malte F. Jansen; Guillaume Le Hir; Gordon D. Love; Francis A. Macdonald; Adam C. Maloof; Camille A. Partin; Gilles Ramstein; Brian E. J. Rose; Catherine V. Rose; Peter M. Sadler; Eli Tziperman; Aiko Voigt; Stephen G. Warren

We review recent observations and models concerning the dynamics of Cryogenian global glaciation and their biological consequences. Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.


The Astrophysical Journal | 2012

A false positive for ocean glint on exoplanets: The latitude-albedo effect

Nicolas B. Cowan; Dorian S. Abbot; Aiko Voigt

Identifying liquid water on the surface of planets is a high priority, as this traditionally defines habitability. One proposed signature of oceans is specular reflection (glint), which increases the apparent albedo of a planet at crescent phases. We post-process a global climate model of an Earth-like planet to simulate reflected light curves. Significantly, we obtain glint-like phase variations even though we do not include specular reflection in our model. This false positive is the product of two generic properties: (1) for modest obliquities, a planets poles receive less orbit-averaged stellar flux than its equator, so the poles are more likely to be covered in highly reflective snow and ice; and (2) we show that reflected light from a modest-obliquity planet at crescent phases probes higher latitudes than at gibbous phases, therefore a planets apparent albedo will naturally increase at crescent phase. We suggest that this latitude-albedo effect will operate even for large obliquities: in that case the equator receives less orbit-averaged flux than the poles, and the equator is preferentially sampled at crescent phase. Using rotational and orbital color variations to map the surfaces of directly imaged planets and estimate their obliquity will therefore be a necessary pre-condition for properly interpreting their reflected phase variations. The latitude-albedo effect is a particularly convincing glint false positive for zero-obliquity planets, and such worlds are not amenable to latitudinal mapping. This effect severely limits the utility of specular reflection for detecting oceans on exoplanets.


Geophysical Research Letters | 2016

Land dominates the regional response to CO2 direct radiative forcing

Tiffany A. Shaw; Aiko Voigt

In Atmospheric General Circulation Models (AGCMs) direct radiative forcing (increased CO2 with fixed sea surface temperature) is an imperfect concept because land temperatures are not fixed. Here the response to direct radiative forcing is decomposed into increased CO2 over ocean and land using an AGCM with spatially dependent CO2. The land versus ocean response is mostly linear. Consistent with previous work, ocean direct radiative forcing decreases ocean-averaged outgoing longwave radiation, precipitation and tropical circulation intensity, however it cannot explain the regional response to direct radiative forcing. Increased CO2 over land dominates the regional response via energy input over land, e.g. over deserts where there is no cloud and water vapor masking, and a Rossby-wave teleconnection. This mechanism operates across a range of climate perturbations, including decreased CO2. Previous AGCM decompositions involving direct radiative forcing and indirect SST warming must be reinterpreted to include the importance of increased CO2 over land.


Journal of Advances in Modeling Earth Systems | 2016

The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP

Aiko Voigt; Michela Biasutti; Jacob Scheff; Jürgen Bader; Simona Bordoni; Francis Codron; Ross D. Dixon; Jeffrey Jonas; Sarah M. Kang; Nicholas P. Klingaman; Ruby Leung; Jian Lu; Brian E. Mapes; Elizabeth A. Maroon; Sonali McDermid; Jong yeon Park; Romain Roehrig; Brian E. J. Rose; Gary L. Russell; Jeongbin Seo; Thomas Toniazzo; Ho Hsuan Wei; Masakazu Yoshimori; Lucas R. Vargas Zeppetello

This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Inter-comparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP’s potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate change.


Journal of Climate | 2016

Impact of Regional Atmospheric Cloud Radiative Changes on Shifts of the Extratropical Jet Stream in Response to Global Warming

Aiko Voigt; Tiffany A. Shaw

AbstractClimate models robustly project that global warming will lead to a poleward shift of the annual-mean zonal-mean extratropical jet streams. The magnitude of such shifts remains uncertain, however, and recent work has indicated a potentially important role of cloud radiative interactions. The model spread found in realistic simulations with interactive sea surface temperatures (SSTs) is captured in aquaplanet simulations with prescribed SSTs, because of which the latter setup is adapted here to study the impact of regional atmospheric cloud radiative changes on the jet position. Simulations with two CMIP5 models and prescribed regional cloud changes show that the rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud chan...


Geophysical Research Letters | 2016

What can moist thermodynamics tell us about circulation shifts in response to uniform warming

Tiffany A. Shaw; Aiko Voigt

Aquaplanet simulations exhibit a robust expansion of the Hadley cell and poleward jet shift in response to uniform warming of sea surface temperature. Here moist thermodynamic and dynamic frameworks are combined to make predictions of circulation responses to warming. We show Clausius-Clapeyron (CC) scaling of specific humidity with warming predicts an expansion of the Hadley circulation according to convective quasi-equilibrium dynamics. A poleward jet shift follows from the control-climate relationship between the Hadley cell edge and jet stream position. CC scaling of specific humidity with warming also predicts decreased diffusivity and a poleward shift of the latitude of maximum latent and dry static energy transport according to mixing-length theory. Finally, atmospheric cloud radiative changes shift the latitude of maximum energy transport poleward in most models. Our results show moist thermodynamics can predict meridional shifts of the circulation when combined with dynamical frameworks; however, additional feedbacks are important for the simulated response.


Journal of Climate | 2016

Understanding the Links between Subtropical and Extratropical Circulation Responses to Climate Change Using Aquaplanet Model Simulations

Tiffany A. Shaw; Aiko Voigt

AbstractPrevious research has shown that subtropical and extratropical circulations are linked seasonally and in response to climate change. In particular, amplification (weakening) of subtropical stationary eddies is linked to a poleward (equatorward) shift of the extratropical circulation in the Northern Hemisphere. Here the mechanisms linking subtropical and extratropical circulation responses to climate change are examined using prescribed sea surface temperature aquaplanet simulations with a subtropical zonal asymmetry that mimics land–ocean contrasts. A poleward circulation shift occurs in response to uniform global warming even in the presence of subtropical stationary eddies. Subtropical stationary eddies exhibit a weak response to global warming; however, regional warming of temperature (or equivalent potential temperature) over land (ocean) increases (decreases) stationary eddy amplitude and shifts the extratropical circulation poleward (equatorward), consistent with comprehensive models. The st...


Journal of Advances in Modeling Earth Systems | 2017

Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol

Aiko Voigt; Robert Pincus; Bjorn Stevens; Sandrine Bony; Olivier Boucher; Nicolas Bellouin; Anna Lewinschal; Brian Medeiros; Zhili Wang; Hua Zhang

Previous modeling work showed that aerosol can affect the position of the tropical rain belt, i.e., the intertropical convergence zone (ITCZ). Yet, it remains unclear which aspects of the aerosol impact are robust across models, and which are not. Here, we present simulations with seven comprehensive atmosphere models that study the fast and slow impacts of an idealized anthropogenic aerosol on the zonal-mean ITCZ position. The fast impact, which results from aerosol atmospheric heating and land cooling before sea-surface temperature (SST) have time to respond, causes a northward ITCZ shift. Yet, the fast impact is compensated locally by decreased evaporation over the ocean, and a clear northward shift is only found for an unrealistically large aerosol forcing. The local compensation implies that while models differ in atmospheric aerosol heating, this does not contribute to model differences in the ITCZ shift. The slow impact includes the aerosol impact on the ocean surface energy balance and is mediated by SST changes. The slow impact is an order of magnitude more effective than the fast impact and causes a clear southward ITCZ shift for realistic aerosol forcing. Models agree well on the slow ITCZ shift when perturbed with the same SST pattern. However, an energetic analysis suggests that the slow ITCZ shifts would be substantially more model dependent in interactive-SST setups due to model differences in clear-sky radiative transfer and clouds. We also discuss implications for the representation of aerosol in climate models and attributions of recent observed ITCZ shifts to aerosol. This article is protected by copyright. All rights reserved.


Nature Geoscience | 2018

Global energetics and local physics as drivers of past, present and future monsoons

Michela Biasutti; Aiko Voigt; William R. Boos; Pascale Braconnot; J. C. Hargreaves; Sandy P. Harrison; Sarah M. Kang; Brian E. Mapes; Jacob Scheff; Courtney Schumacher; Adam H. Sobel; Shang-Ping Xie

Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.The creation of an energetic framework for monsoon systems is needed to fully understand past and future variations in tropical rainfall, according to a literature review.

Collaboration


Dive into the Aiko Voigt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Scheff

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Sarah M. Kang

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian E. J. Rose

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Brian Medeiros

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Robert Pincus

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge