Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aileen Yang is active.

Publication


Featured researches published by Aileen Yang.


Science of The Total Environment | 2014

Oxidative potential of particulate matter collected at sites with different source characteristics.

Nicole A.H. Janssen; Aileen Yang; Maciej Strak; Maaike Steenhof; Bryan Hellack; Miriam E. Gerlofs-Nijland; Thomas A. J. Kuhlbusch; Frank J. Kelly; Roy M. Harrison; Bert Brunekreef; Gerard Hoek; Flemming R. Cassee

BACKGROUND The oxidative potential (OP) of particulate matter (PM) has been proposed as a more health relevant metric than PM mass. Different assays exist for measuring OP and little is known about how the different assays compare. AIM To assess the OP of PM collected at different site types and to evaluate differences between locations, size fractions and correlation with PM mass and PM composition for different measurement methods for OP. METHODS PM2.5 and PM10 was sampled at 5 sites: an underground station, a farm, 2 traffic sites and an urban background site. Three a-cellular assays; dithiothreitol (OP(DTT)), electron spin resonance (OP(ESR)) and ascorbate depletion (OP(AA)) were used to characterize the OP of PM. RESULTS The highest OP was observed at the underground, where OP of PM10 was 30 (OP(DTT)) to >600 (OP(ESR)) times higher compared to the urban background when expressed as OP/m(3) and 2-40 times when expressed as OP/μg. For the outdoor sites, samples from the farm showed significantly lower OP(ESR) and OP(AA), whereas samples from the continuous traffic site showed the highest OP for all assays. Contrasts in OP between sites were generally larger than for PM mass and were lower for OP(DTT) compared to OP(ESR) and OP(AA). Furthermore, OP(DTT)/μg was significantly higher in PM2.5 compared to PM10, whereas the reverse was the case for OP(ESR). OP(ESR) and OP(AA) were highly correlated with traffic-related PM components (i.e. EC, Fe, Cu, PAHs), whereas OP(DTT) showed the highest correlation with PM mass and OC. CONCLUSIONS Contrasts in OP between sites, differences in size fractions and correlation with PM composition depended on the specific OP assay used, with OP(ESR) and OP(AA) showing the most similar results. This suggests that either OP(ESR) or OP(AA) and OP(DTT) can complement each other in providing information regarding the oxidative properties of PM, which can subsequently be used to study its health effects.


Environmental Health | 2012

Chlorpyrifos and neurodevelopmental effects: a literature review and expert elicitation on research and policy

Margaret Saunders; Brooke Magnanti; Sara Correia Carreira; Aileen Yang; Urinda Alamo-Hernández; Horacio Riojas-Rodriguez; Gemma Calamandrei; Janna G. Koppe; Martin Krayer von Krauss; Hans Keune; Alena Bartonova

BackgroundOrganophosphate pesticides are widely used on food crops grown in the EU. While they have been banned from indoor use in the US for a decade due to adverse health effects, they are still the most prevalent pesticides in the EU, with Chlorpyrifos (CPF) being the most commonly applied. It has been suggested CPF affects neurodevelopment even at levels below toxicity guidelines. Younger individuals may be more susceptible than adults due to biological factors and exposure settings.MethodsA literature review was undertaken to assess the evidence for CPF contributing to neurodevelopmental disorders in infants and children. Other literature was consulted in order to formulate a causal chain diagram showing the origins, uptake, and neurological effects of animal and human exposure to CPF.The causal chain diagram and a questionnaire were distributed online to scientific experts who had published in relevant areas of research. They were asked to assess their confidence levels on whether CPF does in fact contribute to adverse neurodevelopment outcomes and rate their confidence in the scientific evidence. A second questionnaire queried experts as to which kind of policy action they consider justifiable based on current knowledge. In a special workshop session at the EuroTox congress in Dresden in 2009 the results of both questionnaires were further discussed with invited experts, as a basis for a policy brief with main messages for policy makers and stakeholders.ResultsMost experts who responded to the first questionnaire felt that there was already enough evidence to support a ban on indoor uses of CPF in the EU. However, most felt additional research is still required in several areas. The responses from the first questionnaire were used to formulate the second questionnaire addressing the feasibility of government action. In turn, these expert participants were invited to attend a special session at the EuroTox congress in Dresden in 2009.ConclusionsSome of the evidence that CPF contributes to neurodevelopmental disorders is still disputed among experts, and the overall sense is that further research and public awareness are warranted. There have been campaigns in North America making the potential exposure concerns known, but such information is not widely known in the EU. The ability of government action to produce change is strongly felt in some quarters while others believe better knowledge of consumer use trends would have a greater impact.


Environmental Health | 2012

Policy relevant Results from an Expert Elicitation on the Human Health Risks of Decabromodiphenyl ether (decaBDE) and Hexabromocyclododecane (HBCD)

Solveig Ravnum; Karin E. Zimmer; Hans Keune; Arno C. Gutleb; Albertinka J. Murk; Janna G. Koppe; Brooke Magnanti; Jan Ludvig Lyche; Gunnar Sundstøl Eriksen; Erik Ropstad; Janneche Utne Skaare; Michael John Kobernus; Aileen Yang; Alena Bartonova; Martin Krayer von Krauss

AimApply a recently developed expert elicitation procedure to evaluate the state of the current knowledge of the two brominated flame retardants (BFRs) most commonly used today; decabromo-diphenyl ether (decaBDE) and hexabromocyclododecane (HBCD) and their potential impact on human health in order to support policy considerations. This expert elicitation was organized by the HENVINET (Health and Environment Network) Consortium.MethodThe HENVINET expert elicitation procedure that was used in the evaluations of decaBDE and HBCD is a rapid assessment tool aimed at highlighting areas of agreement and areas of disagreement on knowledge-related key issues for environment and health policy decision making.ResultsThe outcome of the expert consultation on BFRs was concrete expert advice for policy makers with specific priorities for further action made clear for both stakeholders and policy makers. The experts were not in agreement whether or not the knowledge currently available on decaBDE or HBCD is sufficient to justify policy actions, but most experts considered that enough data already exists to support a ban or restriction on the use of these compounds. All experts agreed on the necessity of more research on the compounds. Priority issues for further research were, among others:• more studies on the extent of human exposure to the compounds.• more studies on the fate and concentration in the human body of the compounds.


Occupational and Environmental Medicine | 2016

Children's respiratory health and oxidative potential of PM2.5: the PIAMA birth cohort study

Aileen Yang; Nicole A.H. Janssen; Bert Brunekreef; Flemming R. Cassee; Gerard Hoek; Ulrike Gehring

Introduction The oxidative potential (OP) of particulate matter (PM) has been proposed as a health-relevant metric, but currently few epidemiological studies investigated associations of OP with health. Our main aim was to assess associations of long-term exposure to OP with respiratory health in children. Our second aim was to evaluate whether OP is more consistently associated with respiratory health than PM mass, PM composition or nitrogen dioxide (NO2). Methods For 3701 participants of a prospective birth cohort, annual average concentrations of OP (assessed by spin resonance (OPESR) and dithiothreitol assay (OPDTT)), PM with an aerodynamic diameter of less than 2.5 µm (PM2.5) mass, NO2, and PM2.5 constituents at the home addresses at birth and at all follow-up addresses were estimated by land-use regression. Repeated questionnaire reports of asthma and hay fever until age 14 years, and measurements of allergic sensitisation, lung function and fractional exhaled nitric oxide at age 12 years were linked with air pollution concentrations. Results Asthma incidence, prevalence of asthma symptoms and rhinitis were positively associated with OPDTT (adjusted OR (95% CI) per IQR increase in exposure 1.10 (1.01 to 1.20), 1.08 (1.02 to 1.16), 1.15 (1.05 to 1.26), respectively). These associations persisted after adjustment for most co-pollutants. Forced expiratory volume in 1s and forced vital capacity were negatively associated with OPDTT. These associations were sensitive to adjustment for NO2. Respiratory health was not significantly associated with PM2.5 mass and OPESR. Conclusions Respiratory health was more strongly associated with OPDTT than with PM2.5 mass; OPDTT associations with lung function, but not symptoms, were sensitive to adjustment for NO2.


Occupational and Environmental Medicine | 2015

Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers.

Nicole A.H. Janssen; Maciej Strak; Aileen Yang; Bryan Hellack; Frank J. Kelly; Thomas A. J. Kuhlbusch; Roy M. Harrison; Bert Brunekreef; Flemming R. Cassee; Maaike Steenhof; Gerard Hoek

Introduction We evaluated associations between three a-cellular measures of the oxidative potential (OP) of particulate matter (PM) and acute health effects. Methods We exposed 31 volunteers for 5 h to ambient air pollution at five locations: an underground train station, two traffic sites, a farm and an urban background site. Each volunteer visited at least three sites. We conducted health measurements before exposure, 2 h after exposure and the next morning. We measured air pollution on site and characterised the OP of PM2.5 and PM10 using three a-cellular assays; dithiotreitol (OPDTT), electron spin resonance (OPESR) and ascorbic acid depletion (OPAA). Results In single-pollutant models, all measures of OP were significantly associated with increases in fractional exhaled nitric oxide and increases in interleukin-6 in nasal lavage 2 h after exposure. These OP associations remained significant after adjustment for co-pollutants when only the four outdoor sites were included, but lost significance when measurements at the underground site were included. Other health end points including lung function and vascular inflammatory and coagulation parameters in blood were not consistently associated with OP. Conclusions We found significant associations between three a-cellular measures of OP of PM and markers of airway and nasal inflammation. However, consistency of these effects in two-pollutant models depended on how measurements at the underground site were considered. Lung function and vascular inflammatory and coagulation parameters in blood were not consistently associated with OP. Our study, therefore, provides limited support for a role of OP in predicting acute health effects of PM in healthy young adults.


Environmental Health | 2012

An expert assessment on climate change and health – with a European focus on lungs and allergies

Bertil Forsberg; Lennart Bråbäck; Hans Keune; Michael John Kobernus; Martin Krayer von Krauss; Aileen Yang; Alena Bartonova

BackgroundFor almost 20 years, the Intergovernmental Panel on Climate Change has been assessing the potential health risks associated with climate change; with increasingly convincing evidence that climate change presents existing impacts on human health. In industrialized countries climate change may further affect public health and in particular respiratory health, through existing health stressors, including, anticipated increased number of deaths and acute morbidity due to heat waves; increased frequency of cardiopulmonary events due to higher concentrations of air pollutants; and altered spatial and temporal distribution of allergens and some infectious disease vectors. Additionally exposure to moulds and contaminants from water damaged buildings may increase.MethodsWe undertook an expert elicitation amongst European researchers engaged in environmental medicine or respiratory health. All experts were actively publishing researchers on lung disease and air pollution, climate and health or a closely related research. We conducted an online questionnaire on proposed causal diagrams and determined levels of confidence that climate change will have an impact on a series of stressors. In a workshop following the online questionnaire, half of the experts further discussed the results and reasons for differences in assessments of the state of knowledge on exposures and health effects.ResultsOut of 16 experts, 100% expressed high to very high confidence that climate change would increase the frequency of heat waves. At least half expressed high or very high confidence that climate change would increase levels of pollen (50%), particulate matter (PM2.5) (55%), and ozone (70%). While clarity is needed around the impacts of increased exposures to health impacts of some stressors, including ozone and particulate matter levels, it was noted that definitive knowledge is not a prerequisite for policy action. Information to the public, preventive measures, monitoring and warning systems were among the most commonly mentioned preventative actions.ConclusionsThis group of experts identifies clear health risks associated with climate change, and express opinions about these risks even while they do not necessarily regard themselves as covering all areas of expertise. Since some changes in exposure have already been observed, the consensus is that there is already a scientific basis for preventative action, and that the associated adaptation and mitigation policies should also be evidence based.


Environmental Health Perspectives | 2015

Spatial Variation and Land Use Regression Modeling of the Oxidative Potential of Fine Particles.

Aileen Yang; Meng Wang; Marloes Eeftens; Rob Beelen; Evi Dons; Daan L. A. C. Leseman; Bert Brunekreef; Flemming R. Cassee; Nicole A.H. Janssen; Gerard Hoek

Background Oxidative potential (OP) has been suggested to be a more health-relevant metric than particulate matter (PM) mass. Land use regression (LUR) models can estimate long-term exposure to air pollution in epidemiological studies, but few have been developed for OP. Objectives We aimed to characterize the spatial contrasts of two OP methods and to develop and evaluate LUR models to assess long-term exposure to the OP of PM2.5. Methods Three 2-week PM2.5 samples were collected at 10 regional background, 12 urban background, and 18 street sites spread over the Netherlands/Belgium in 1 year and analyzed for OP using electron spin resonance (OPESR) and dithiothreitol (OPDTT). LUR models were developed using temporally adjusted annual averages and a range of land-use and traffic-related GIS variables. Results Street/urban background site ratio was 1.2 for OPDTT and 1.4 for OPESR, whereas regional/urban background ratio was 0.8 for both. OPESR correlated moderately with OPDTT (R2 = 0.35). The LUR models included estimated regional background OP, local traffic, and large-scale urbanity with explained variance (R2) of 0.60 for OPDTT and 0.67 for OPESR. OPDTT and OPESR model predictions were moderately correlated (R2 = 0.44). OP model predictions were moderately to highly correlated with predictions from a previously published PM2.5 model (R2 = 0.37–0.52), and highly correlated with predictions from previously published models of traffic components (R2 > 0.50). Conclusion LUR models explained a large fraction of the spatial variation of the two OP metrics. The moderate correlations among the predictions of OPDTT, OPESR, and PM2.5 models offer the potential to investigate which metric is the strongest predictor of health effects. Citation Yang A, Wang M, Eeftens M, Beelen R, Dons E, Leseman DL, Brunekreef B, Cassee FR, Janssen NA, Hoek G. 2015. Spatial variation and land use regression modeling of the oxidative potential of fine particles. Environ Health Perspect 123:1187–1192; http://dx.doi.org/10.1289/ehp.1408916


Environmental Health | 2012

Policy relevant results from an expert elicitation on the health risks of phthalates.

Karin E. Zimmer; Arno C. Gutleb; Solveig Ravnum; Martin Krayer von Krauss; Albertinka J. Murk; Erik Ropstad; Janneche Utne Skaare; Gunnar Sundstøl Eriksen; Jan Ludvig Lyche; Janna G. Koppe; Brooke Magnanti; Aileen Yang; Alena Bartonova; Hans Keune

BackgroundThe EU 6th Framework Program (FP)-funded Health and Environment Network (HENVINET) aimed to support informed policy making by facilitating the availability of relevant knowledge on different environmental health issues. An approach was developed by which scientific agreement, disagreement, and knowledge gaps could be efficiently identified, and expert advice prepared in a way that is usable for policy makers. There were two aims of the project: 1) to apply the tool to a relevant issue; the potential health impacts of the widely used plasticizers, phthalates, and 2) to evaluate the method and the tool by asking both scientific experts and the target audience, namely policy makers and stakeholders, for their opinions.MethodsThe tool consisted of an expert consultation in several steps on the issue of phthalates in environmental health. A diagram depicting the cause-effect chain, from the production and use of phthalates to potential health impacts, was prepared based on existing reviews. This was used as a basis for an online questionnaire, through which experts in the field were consulted. The results of this first round of consultation laid the foundation for a new questionnaire answered by an expert panel that, subsequently, also discussed approaches and results in a workshop. One major task of the expert panel was to pinpoint priorities from the cause-effect chain according to their impact on the extent of potential health risks and their relevance for reducing uncertainty. The results were condensed into a policy brief that was sent to policy makers and stakeholders for their evaluation.ResultsThe experts agreed about the substantial knowledge gaps within the field of phthalates. The top three priorities for further research and policy action were: 1) intrauterine exposure, 2) reproductive toxicology, and 3) exposure from medical devices. Although not all relevant information from the cause-effect chain is known for phthalates, most experts thought that there are enough indications to justify a precautionary approach and to restrict their general use. Although some of the experts expressed some scepticism about such a tool, most felt that important issues were highlighted.ConclusionsThe approach used was an efficient way at summarising priority knowledge gaps as a starting point for health risk assessment of compounds, based on their relevance for the risk assessment outcome. We conclude that this approach is useful for supporting policy makers with state-of-the-art scientific knowledge weighed by experts. The method can assist future evidence-based policy making.


Environmental Health | 2012

We’re only in it for the knowledge? A problem solving turn in environment and health expert elicitation

Hans Keune; Arno C. Gutleb; Karin E. Zimmer; Solveig Ravnum; Aileen Yang; Alena Bartonova; Martin Krayer von Krauss; Erik Ropstad; Gunnar Sundstøl Eriksen; Margaret Saunders; Brooke Magnanti; Bertil Forsberg

BackgroundThe FP6 EU HENVINET project aimed at synthesizing the scientific information available on a number of topics of high relevance to policy makers in environment and health. The goal of the current paper is to reflect on the methodology that was used in the project, in view of exploring the usefulness of this and similar methodologies to the policy process. The topics investigated included health impacts of the brominated flame retardants decabrominated diphenylether (decaBDE) and hexabromocyclododecane (HBCD), phthalates highlighting di(2-ethylhexyl)phthalate (DEHP), the pesticide chlorpyrifos (CPF), nanoparticles, the impacts of climate change on asthma and other respiratory disorders, and the influence of environment health stressors on cancer induction.MethodsInitially the focus was on identifying knowledge gaps in the state of the art in scientific knowledge. Literature reviews covered all elements that compose the causal chain of the different environmental health issues from emissions to exposures, to effects and to health impacts. Through expert elicitation, knowledge gaps were highlighted by assessing expert confidence using calibrated confidence scales. During this work a complementary focus to that on knowledge gaps was developed through interdisciplinary reflections. By extending the scope of the endeavour from only a scientific perspective, to also include the more problem solving oriented policy perspective, the question of which kind of policy action experts consider justifiable was addressed. This was addressed by means of a questionnaire. In an expert workshop the results of both questionnaires were discussed as a basis for policy briefs.ResultsThe expert elicitation, the application of the calibrated confidence levels and the problem solving approach were all experienced as being quite challenging for the experts involved, as these approaches did not easily relate to mainstream environment and health scientific practices. Even so, most experts were quite positive about it. In particular, the opportunity to widen one’s own horizon and to interactively exchange knowledge and debate with a diversity of experts seemed to be well appreciated in this approach. Different parts of the approach also helped in focussing on specific relevant aspects of scientific knowledge, and as such can be considered of reflective value.ConclusionsThe approach developed by HENVINET was part of a practice of learning by doing and of interdisciplinary cooperation and negotiation. Ambitions were challenged by unforeseen complexities and difference of opinion and as no Holy Grail approach was at hand to copy or follow, it was quite an interesting but also complicated endeavour. Perfection, if this could be defined, seemed out of reach all the time. Nevertheless, many involved were quite positive about it. It seems that many felt that it fitted some important needs in current science when addressing the needs of policy making on such important issues, without anyone really having a clue on how to actually do this. Challenging questions remain on the quality of such approach and its product. Practice tells us that there probably is no best method and that the best we can do is dependent on contextual negotiation and learning from experiences that we think are relevant.


Environmental Health | 2012

Facilitating knowledge transfer: decision support tools in environment and health

Hai Ying Liu; Alena Bartonova; Panagiotis Neofytou; Aileen Yang; Michael John Kobernus; E. Negrenti; Christos Housiadas

The HENVINET Health and Environment Network aimed to enhance the use of scientific knowledge in environmental health for policy making. One of the goals was to identify and evaluate Decision Support Tools (DST) in current use. Special attention was paid to four “priority” health issues: asthma and allergies, cancer, neurodevelopment disorders, and endocrine disruptors.We identified a variety of tools that are used for decision making at various levels and by various stakeholders. We developed a common framework for information acquisition about DSTs, translated this to a database structure and collected the information in an online Metadata Base (MDB).The primary product is an open access web-based MDB currently filled with 67 DSTs, accessible through the HENVINET networking portal http://www.henvinet.eu and http://henvinet.nilu.no. Quality assurance and control of the entries and evaluation of requirements to use the DSTs were also a focus of the work.The HENVINET DST MDB is an open product that enables the public to get basic information about the DSTs, and to search the DSTs using pre-designed attributes or free text. Registered users are able to 1) review and comment on existing DSTs; 2) evaluate each DST’s functionalities, and 3) add new DSTs, or change the entry for their own DSTs.Assessment of the available 67 DSTs showed: 1) more than 25% of the DSTs address only one pollution source; 2) 25% of the DSTs address only one environmental stressor; 3) almost 50% of the DSTs are only applied to one disease; 4) 41% of the DSTs can only be applied to one decision making area; 5) 60% of the DSTs’ results are used only by national authority and/or municipality/urban level administration; 6) almost half of the DSTs are used only by environmental professionals and researchers. This indicates that there is a need to develop DSTs covering an increasing number of pollution sources, environmental stressors and health end points, and considering links to other ‘Driving forces-Pressures-State-Exposure-Effects-Actions’ (DPSEEA) elements. Of interest to both researchers and decision makers should be the standardization of the way DSTs are described for easier access to the knowledge, and the identification of coverage gaps.

Collaboration


Dive into the Aileen Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alena Bartonova

Norwegian Institute for Air Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Hellack

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Keune

Research Institute for Nature and Forest

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brooke Magnanti

University Hospitals Bristol NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge