Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas A. J. Kuhlbusch is active.

Publication


Featured researches published by Thomas A. J. Kuhlbusch.


Particle and Fibre Toxicology | 2006

The potential risks of nanomaterials: a review carried out for ECETOC

Paul J. A. Borm; David Robbins; Stephan Haubold; Thomas A. J. Kuhlbusch; H. Fissan; Ken Donaldson; Roel P. F. Schins; Vicki Stone; Wolfgang G. Kreyling; Jürgen Lademann; Jean Krutmann; David B. Warheit; Eva Oberdörster

During the last few years, research on toxicologically relevant properties of engineered nanoparticles has increased tremendously. A number of international research projects and additional activities are ongoing in the EU and the US, nourishing the expectation that more relevant technical and toxicological data will be published. Their widespread use allows for potential exposure to engineered nanoparticles during the whole lifecycle of a variety of products. When looking at possible exposure routes for manufactured Nanoparticles, inhalation, dermal and oral exposure are the most obvious, depending on the type of product in which Nanoparticles are used. This review shows that (1) Nanoparticles can deposit in the respiratory tract after inhalation. For a number of nanoparticles, oxidative stress-related inflammatory reactions have been observed. Tumour-related effects have only been observed in rats, and might be related to overload conditions. There are also a few reports that indicate uptake of nanoparticles in the brain via the olfactory epithelium. Nanoparticle translocation into the systemic circulation may occur after inhalation but conflicting evidence is present on the extent of translocation. These findings urge the need for additional studies to further elucidate these findings and to characterize the physiological impact. (2) There is currently little evidence from skin penetration studies that dermal applications of metal oxide nanoparticles used in sunscreens lead to systemic exposure. However, the question has been raised whether the usual testing with healthy, intact skin will be sufficient. (3) Uptake of nanoparticles in the gastrointestinal tract after oral uptake is a known phenomenon, of which use is intentionally made in the design of food and pharmacological components. Finally, this review indicates that only few specific nanoparticles have been investigated in a limited number of test systems and extrapolation of this data to other materials is not possible. Air pollution studies have generated indirect evidence for the role of combustion derived nanoparticles (CDNP) in driving adverse health effects in susceptible groups. Experimental studies with some bulk nanoparticles (carbon black, titanium dioxide, iron oxides) that have been used for decades suggest various adverse effects. However, engineered nanomaterials with new chemical and physical properties are being produced constantly and the toxicity of these is unknown. Therefore, despite the existing database on nanoparticles, no blanket statements about human toxicity can be given at this time. In addition, limited ecotoxicological data for nanomaterials precludes a systematic assessment of the impact of Nanoparticles on ecosystems.


Particle and Fibre Toxicology | 2011

Nanoparticle exposure at nanotechnology workplaces: A review

Thomas A. J. Kuhlbusch; Christof Asbach; H. Fissan; Daniel Göhler; Michael Stintz

Risk, associated with nanomaterial use, is determined by exposure and hazard potential of these materials. Both topics cannot be evaluated absolutely independently. Realistic dose concentrations should be tested based on stringent exposure assessments for the corresponding nanomaterial taking into account also the environmental and product matrix. This review focuses on current available information from peer reviewed publications related to airborne nanomaterial exposure. Two approaches to derive realistic exposure values are differentiated and independently presented; those based on workplace measurements and the others based on simulations in laboratories. An assessment of the current available workplace measurement data using a matrix, which is related to nanomaterials and work processes, shows, that data are available on the likelihood of release and possible exposure. Laboratory studies are seen as an important complementary source of information on particle release processes and hence for possible exposure. In both cases, whether workplace measurements or laboratories studies, the issue of background particles is a major problem. From this review, major areas for future activities and focal points are identified.


Journal of Environmental Monitoring | 2003

Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition

Tingming Shi; Roel P. F. Schins; Ad M. Knaapen; Thomas A. J. Kuhlbusch; Mike Pitz; Joachim Heinrich; Paul J. A. Borm

Epidemiological studies have demonstrated the relationship between exposure to ambient particulate matter (PM) and health effects in those with cardiopulmonary diseases. The free radical generating activity of particles has been suggested as a unifying factor in the biological activity of PM in toxicological studies but so far has not been applied as a method for environmental monitoring of PM. The purpose of this study was to characterize hydroxyl radical (OH*) production by different size fractions of PM, to use as an alternative method for monitoring of PM composition and activity. We have developed a method, using electron paramagnetic resonance (EPR), to measure OH* radical formation in suspensions of particles in the presence of hydrogen peroxide and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a specific spin-trap. Samples of ambient particulate matter (PM) of different size fractions were collected from various sites on various filters. PM deposited on filters as well as suspensions in water retain its ability to generate OH* and this generation is determined by concentration of hydrogen peroxide and soluble metals. However, large variations in OH* radical formation and kinetics were found with different soluble metals and within metals (Fe, V) with different valencies. The method was applied to environmental monitoring in Hettstedt-Zerbst, situated in South-Eastern Germany, where it showed a relation to Cu-content of PM. The method was also applied in Duisburg, where the PMI fraction showed the highest DMPO-OH* generation but was not linked to particle counts. The method integrates metal bioavailability and reactivity and can provide a better understanding of the effect of small variations in mass concentrations on health.


Journal of Occupational and Environmental Hygiene | 2004

Number Size Distribution, Mass Concentration, and Particle Composition of PM1, PM2.5, and PM10 in Bag Filling Areas of Carbon Black Production

Thomas A. J. Kuhlbusch; S. Neumann; H. Fissan

Number size characteristics and PM10 mass concentrations of particles emitted during the packaging of various kinds of carbon blacks were measured continuously in the bag filling areas of three carbon black plants and concurrently at ambient comparison sites. PM10, PM2.5, and PM1 dust fractions were also determined in the bag filling areas. The filter samples were then analyzed for elemental and organic carbon. Comparisons of the measured number size distributions and mass concentrations during bag filling activities with those measured parallel at the ambient site and with those determined during nonworking periods in the work area enabled the characterization of emitted particles. PM10 mass concentrations were consistently elevated (up to a factor of 20 compared to ambient concentrations) during working periods in the bag filling area. Detailed analysis revealed that the carbon black particles released by bag filling activities had a size distribution starting at ≈ 400 nm aerodynamic diameter (dae) with modes around 1 μm dae and > 8 μm dae. Ultrafine particles (< 100 nm dae), detected in the bag filling areas, were most likely attributed to noncarbon black sources such as forklift and gas heater emissions.


Science of The Total Environment | 2014

Oxidative potential of particulate matter collected at sites with different source characteristics.

Nicole A.H. Janssen; Aileen Yang; Maciej Strak; Maaike Steenhof; Bryan Hellack; Miriam E. Gerlofs-Nijland; Thomas A. J. Kuhlbusch; Frank J. Kelly; Roy M. Harrison; Bert Brunekreef; Gerard Hoek; Flemming R. Cassee

BACKGROUND The oxidative potential (OP) of particulate matter (PM) has been proposed as a more health relevant metric than PM mass. Different assays exist for measuring OP and little is known about how the different assays compare. AIM To assess the OP of PM collected at different site types and to evaluate differences between locations, size fractions and correlation with PM mass and PM composition for different measurement methods for OP. METHODS PM2.5 and PM10 was sampled at 5 sites: an underground station, a farm, 2 traffic sites and an urban background site. Three a-cellular assays; dithiothreitol (OP(DTT)), electron spin resonance (OP(ESR)) and ascorbate depletion (OP(AA)) were used to characterize the OP of PM. RESULTS The highest OP was observed at the underground, where OP of PM10 was 30 (OP(DTT)) to >600 (OP(ESR)) times higher compared to the urban background when expressed as OP/m(3) and 2-40 times when expressed as OP/μg. For the outdoor sites, samples from the farm showed significantly lower OP(ESR) and OP(AA), whereas samples from the continuous traffic site showed the highest OP for all assays. Contrasts in OP between sites were generally larger than for PM mass and were lower for OP(DTT) compared to OP(ESR) and OP(AA). Furthermore, OP(DTT)/μg was significantly higher in PM2.5 compared to PM10, whereas the reverse was the case for OP(ESR). OP(ESR) and OP(AA) were highly correlated with traffic-related PM components (i.e. EC, Fe, Cu, PAHs), whereas OP(DTT) showed the highest correlation with PM mass and OC. CONCLUSIONS Contrasts in OP between sites, differences in size fractions and correlation with PM composition depended on the specific OP assay used, with OP(ESR) and OP(AA) showing the most similar results. This suggests that either OP(ESR) or OP(AA) and OP(DTT) can complement each other in providing information regarding the oxidative properties of PM, which can subsequently be used to study its health effects.


Annals of Occupational Hygiene | 2012

Comparability of Portable Nanoparticle Exposure Monitors

Christof Asbach; Heinz Kaminski; Daniel Von Barany; Thomas A. J. Kuhlbusch; Christian Monz; Nico Dziurowitz; Johannes Pelzer; Katja Vossen; Knut Berlin; Silvio Dietrich; Uwe Götz; Heinz-Jürgen Kiesling; Rudolf Schierl; Dirk Dahmann

Five different portable instrument types to monitor exposure to nanoparticles were subject to an intensive intercomparison measurement campaign. Four of them were based on electrical diffusion charging to determine the number concentration or lung deposited surface area (LDSA) concentration of airborne particles. Three out of these four also determined the mean particle size. The fifth instrument type was a handheld condensation particle counter (CPC). The instruments were challenged with three different log-normally distributed test aerosols with modal diameters between 30 and 180 nm, varying in particle concentration and morphology. The CPCs showed the highest comparability with deviations on the order of only ±5%, independent of the particle sizes, but with a strictly limited upper number concentration. The diffusion charger-based instruments showed comparability on the order of ±30% for number concentration, LDSA concentration, and mean particle size, when the specified particle size range of the instruments matched the size range of the aerosol particles, whereas significant deviations were found when a large amount of particles exceeded the upper or lower detection limit. In one case the reported number concentration was even increased by a factor of 6.9 when the modal diameter of the test aerosol exceeded the specified upper limit of the instrument. A general dependence of the measurement accuracy of all devices on particle morphology was not detected.


Critical Reviews in Environmental Science and Technology | 2015

A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment

Willie J.G.M. Peijnenburg; Mohamed Baalousha; Jingwen Chen; Q. Chaudry; F. von der Kammer; Thomas A. J. Kuhlbusch; Carmen Nickel; Joris T.K. Quik; M. Renkerg; Albert A. Koelmans

Proper understanding of the basic processes and specific properties of engineered nanomaterials (NMs) that modify the fate and effects of NMs is crucial for NM-tailored risk assessment. This in turn requires developers of NMs and for regulators to consider the most important parameters governing the properties, behavior and toxicity of NMs. As fate and effect studies are commonly performed in laboratory settings, mimicking to a varying extent realistic exposure conditions, it is important to be able to extrapolate results of fate and effect studies in synthetic media to realistic environmental conditions. This requires detailed understanding of the processes controlling the fate and behavior of NMs in terrestrial and aquatic media, as dependent on the composition of the medium. It is the aim of this contribution to provide background reading to the NM and media specific properties and processes that affect the fate and behavior of NMs in aquatic environments, focusing on the specific properties of NMs that modulate the interactions in the aquatic environment. A general introduction on the dominant fate determining processes of NMs is supplemented by case studies on specific classes of NMs: metal NMs, stable oxides, iron oxides, and carbon nanotubes. Based on the synthesis of the current knowledge base toward essential data and information needs, the review provides a description of the particle specific properties and the water characteristics that need monitoring in order to allow for future quantification and extrapolation of fate and behavior properties of NMs in freshwater compartments of varying composition.


PLOS ONE | 2013

Zinc Oxide Nanoparticles Induce Necrosis and Apoptosis in Macrophages in a p47phox- and Nrf2-Independent Manner

Verena Wilhelmi; Ute Fischer; Heike Weighardt; Klaus Schulze-Osthoff; Carmen Nickel; Burkhard Stahlmecke; Thomas A. J. Kuhlbusch; Agnes M. Scherbart; Charlotte Esser; Roel P. F. Schins; Catrin Albrecht

In view of the steadily increasing use of zinc oxide nanoparticles in various industrial and consumer applications, toxicological investigations to evaluate their safety are highly justified. We have investigated mechanisms of ZnO nanoparticle-induced apoptosis and necrosis in macrophages in relation to their important role in the clearance of inhaled particulates and the regulation of immune responses during inflammation. In the murine macrophage RAW 264.7 cell line, ZnO treatment caused a rapid induction of nuclear condensation, DNA fragmentation, and the formation of hypodiploid DNA nuclei and apoptotic bodies. The involvement of the essential effector caspase-3 in ZnO-mediated apoptosis could be demonstrated by immunocytochemical detection of activated caspase-3 in RAW 264.7 cells. ZnO specifically triggered the intrinsic apoptotic pathway, because Jurkat T lymphocytes deficient in the key mediator caspase-9 were protected against ZnO-mediated toxicity whereas reconstituted cells were not. ZnO also caused DNA strand breakage and oxidative DNA damage in the RAW 264.7 cells as well as p47phox NADPH oxidase-dependent superoxide generation in bone marrow-derived macrophages. However, ZnO-induced cell death was not affected in bone marrow-derived macrophages of mice deficient in p47phox or the oxidant responsive transcription factor Nrf2. Taken together, our data demonstrate that ZnO nanoparticles trigger p47phox NADPH oxidase-mediated ROS formation in macrophages, but that this is dispensable for caspase-9/3-mediated apoptosis. Execution of apoptotic cell death by ZnO nanoparticles appears to be NADPH oxidase and Nrf2-independent but rather triggered by alternative routes.


Journal of Occupational and Environmental Hygiene | 2006

Particle Characteristics in the Reactor and Pelletizing Areas of Carbon Black Production

Thomas A. J. Kuhlbusch; H. Fissan

Physical and chemical characteristics of airborne particles (ultrafine, PM1 , PM 2.5, and PM 10) in reactor and pelletizing areas during carbon black production were measured to assess process related sources of particles in work areas. Results from bagging areas within the same three facilities have been previously published. Particle number and mass concentration measurements were conducted in these work areas and at ambient comparison sites at each of the three carbon black plants. No elevated ultrafine particle number concentrations (UFP, <100 nm) with respect to ambient were determined in the work areas of Plant 1, intermittently elevated concentrations at Plant 2, and permanently elevated concentrations at Plant 3. The intermittently elevated UFP concentrations in the pelletizer and reactor areas of Plant 2 could be related to nearby traffic emissions. The ultrafine particle number concentrations at Plant 2 are comparable to those determined at urban traffic sites. Both work areas of Plant 3 showed elevated UFP concentrations in the pelletizer reactor and areas. In the case of the reactor, which was the only enclosed reactor area investigated among the three facilities, the source of the elevated UFP number concentration was most likely attributable to grease and oil fumes from maintenance activities, a conclusion supported by carbon fractionation analysis. The elevated UFP number concentrations in the pelletizing area in this same plant are related to leaks in the production line, which allowed particulate matter to escape to the surrounding areas. Absolute PM10 mass concentrations were all within normal ambient concentrations except for the pelletizing area in Plant 3, which showed continuous levels above ambient. One additional source contributing to peak level PM10 mass concentrations at Plant 2 was due to wind dispersion from a carbon black spill incident the day prior to measurements. It is concluded from these measurements that no carbon black is released in the reactor and pelletizing areas (as UFP or PM10) from the closed production lines under normal operating conditions.


European Respiratory Journal | 2014

Association of ambient air pollution with the prevalence and incidence of COPD

Tamara Schikowski; Martin Adam; Alessandro Marcon; Yutong Cai; Andrea Vierkötter; Anne Elie Carsin; Bénédicte Jacquemin; Zaina Al Kanani; Rob Beelen; Matthias Birk; Pierre-Olivier Bridevaux; Bert Brunekeef; Peter Burney; Marta Cirach; Josef Cyrys; Kees de Hoogh; Roberto de Marco; Audrey de Nazelle; Christophe Declercq; Bertil Forsberg; Rebecca Hardy; Joachim Heinrich; Gerard Hoek; Deborah Jarvis; Dirk Keidel; Diane Kuh; Thomas A. J. Kuhlbusch; Enrica Migliore; Gioia Mosler; Mark J. Nieuwenhuijsen

The role of air pollution in chronic obstructive pulmonary disease (COPD) remains uncertain. The aim was to assess the impact of chronic exposure to air pollution on COPD in four cohorts using the standardised ESCAPE exposure estimates. Annual average particulate matter (PM), nitrogen oxides (NOx) and road traffic exposure were assigned to home addresses using land-use regression models. COPD was defined by NHANES reference equation (forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) less than the lower limit of normal) and the Global Initiative for Chronic Obstructive Lung Disease criterion (FEV1/FVC <0.70) and categorised by severity in non-asthmatics. We included 6550 subjects with assigned NOx and 3692 with PM measures. COPD was not associated with NO2 or PM10 in any individual cohort. In meta-analyses only NO2, NOx, PM10 and the traffic indicators were positively, although not significantly, associated with COPD. The only statistically significant associations were seen in females (COPD prevalence using GOLD: OR 1.57, 95% CI 1.11–2.23; and incidence: OR 1.79, 95% CI 1.21–2.68). None of the principal results were statistically significant, the weak positive associations of exposure with COPD and the significant subgroup findings need to be evaluated in further well standardised cohorts followed up for longer time, and with time-matched exposure assignments. Results from the ESCAPE study: what is the association of COPD prevalence and incidence with ambient air pollution? http://ow.ly/rQcFM

Collaboration


Dive into the Thomas A. J. Kuhlbusch's collaboration.

Top Co-Authors

Avatar

H. Fissan

University of Duisburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Hellack

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.C. John

University of Duisburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Cyrys

University of Augsburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge