Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aimee R. Poda is active.

Publication


Featured researches published by Aimee R. Poda.


Journal of Chromatography A | 2011

Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry

Aimee R. Poda; Anthony J. Bednar; Alan J. Kennedy; Ashley R. Harmon; M. Hull; D.M. Mitrano; James F. Ranville; Jeffery A. Steevens

The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.


Talanta | 2013

Comparison of on-line detectors for field flow fractionation analysis of nanomaterials

Anthony J. Bednar; Aimee R. Poda; D.M. Mitrano; Alan J. Kennedy; Evan P. Gray; James F. Ranville; C.A. Hayes; F.H. Crocker; Jeffery A. Steevens

Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information. Further, these detectors do not respond directly to the mass concentration of nanoparticles. The present work describes the advantages achieved when interfacing sensitive and elemental specific detectors, such as inductively coupled plasma atomic emission spectroscopy and mass spectrometry, to FFF separation analysis to provide high resolution nanoparticle sizing and compositional analysis at the μg/L concentration level, a detection at least 10-100-fold lower than DLS or FFF-UV techniques. The full benefits are only achieved by utilization of all detector capabilities, such as dynamic reaction cell (DRC) ICP-MS. Such low-level detection and characterization capability is critical to nanomaterial investigations at biologically and environmentally relevant concentrations. The techniques have been modified and applied to characterization of all four elemental constituents of cadmium selenide-zinc sulfide core-shell quantum dots, and silver nanoparticles with gold seed cores. Additionally, sulfide coatings on silver nanoparticles can be detected as a potential means to determine environmental aging of nanoparticles.


ACS Applied Materials & Interfaces | 2013

Determination of Isoelectric Points and the Role of pH for Common Quartz Crystal Microbalance Sensors

Michael F. Cuddy; Aimee R. Poda; Lauren N. Brantley

Isoelectric points (IEPs) were determined by the method of contact angle titration for five common quartz crystal microbalance (QCM) sensors. The isoelectric points range from mildly basic in the case of Al2O3 sensors (IEP = 8.7) to moderately acidic for Au (5.2) and SiO2 (3.9), to acidic for Ag (3.2) and Ti (2.9). In general, the values reported here are indicative of inherent surface oxides. A demonstration of the effect of the surface isoelectric point on the packing efficiency of thin mucin films is provided for gold and silica QCM sensors. It is determined that mucin layers on both substrates achieve a maximum and equal layer density of ∼3500 kg/m(3) at the corresponding IEP of either QCM sensor. This implies that mucin film packing is dependent upon short-range electrostatic interactions at the sensor surface.


Acta Biomaterialia | 2013

Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales.

P.G. Allison; Mei Qiang Chandler; R.I. Rodriguez; Brett A. Williams; Robert D. Moser; Charles A. Weiss; Aimee R. Poda; Brandon J. Lafferty; Alan J. Kennedy; Jennifer M. Seiter; W.D. Hodo; R.F. Cook

During recent decades, research on biological systems such as abalone shell and fish armor has revealed that these biological systems employ carefully arranged hierarchical multilayered structures to achieve properties of high strength, high ductility and light weight. Knowledge of such structures may enable pathways to design bio-inspired materials for various applications. This study was conducted to investigate the spatial distribution of structure, chemical composition and mechanical properties in mineralized fish scales of the species Atractosteus spatula. Microindentation tests were conducted, and cracking patterns and damage sites in the scales were examined to investigate the underlying protective mechanisms of fish scales under impact and penetration loads. A difference in nanomechanical properties was observed, with a thinner, stiffer and harder outer layer (indentation modulus ∼69 GPa and hardness ∼3.3 GPa) on a more compliant and thicker inner layer (indentation modulus ∼14.3 GPa and hardness ∼0.5 GPa). High-resolution scanning electron microscopy imaging of a fracture surface revealed that the outer layer contained oriented nanorods embedded in a matrix, and that the nanostructure of the inner layer contained fiber-like structures organized in a complex layered pattern. Damage patterns formed during microindentation show complex deformation mechanisms. Images of cracks identify growth through the outer layer, then deflection along the interface before growing and arresting in the inner layer. High-magnification images of the crack tip in the inner layer show void-linking and fiber-bridging exhibiting inelastic behavior. The observed difference in mechanical properties and unique nanostructures of different layers may have contributed to the resistance of fish scales to failure by impact and penetration loading.


Journal of Nanoparticle Research | 2015

Tiered guidance for risk-informed environmental health and safety testing of nanotechnologies

Zachary A. Collier; Alan J. Kennedy; Aimee R. Poda; Michael F. Cuddy; Robert D. Moser; Robert I. MacCuspie; Ashley R. Harmon; Kenton Plourde; Christopher Haines; Jeffery A. Steevens

Provided the rapid emergence of novel technologies containing engineered nanomaterials, there is a need to better understand the potential environmental, health, and safety effects of nanotechnologies before wide-scale deployment. However, the unique properties of nanomaterials and uncertainty regarding applicable test methods have led to a lack of consensus regarding the collection and evaluation of data related to hazard and exposure potentials. Often, overly conservative approaches to characterization and data collection result in prolonged, unfocused, or irrelevant testing, which increases costs and delays deployment. In this paper, we provide a novel testing guidance framework for determining whether a nanotechnology has the potential to release material with nano-specific parameters that pose a risk to humans or the environment. The framework considers methods to categorize nanotechnologies by their structure and within their relevant-use scenarios to inform testing in a time- and resource-limited reality. Based on the precedent of dredged sediment testing, a five-tiered approach is proposed in which opportunities are presented to conclude testing once sufficient risk-related information has been collected, or that the technology in question does not require nano-specific scrutiny. A series of screening stages are suggested, covering relevant aspects including size, surface area, distribution, unique behaviors, and release potential. The tiered, adaptive guidance approach allows users to concentrate on collecting the most relevant data, thus accelerating technology deployment while minimizing risk.


Environmental Toxicology and Chemistry | 2014

Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium.

Ashley R. Harmon; Alan J. Kennedy; Aimee R. Poda; Anthony J. Bednar; Mark A. Chappell; Jeffery A. Steevens

Assessing the dissolution of silver nanoparticles (AgNPs) in laboratory test media and in the aquatic environment is critical for determining toxicity. In the present study, the ion-release kinetics for 20-nm, 50-nm, and 80-nm AgNPs in environmentally relevant freshwaters with different electrical conductivity values (30 µS/cm, 150 µS/cm) were examined and related to the associated impact on Daphnia magna. The acute toxicity of the AgNP suspensions to D. magna was assessed after 0 d and 7 d of interaction time between the particles and test media. When 48-h lethal median concentrations were expressed as total silver, D. magna was more sensitive to AgNPs suspended in low ionic strength media relative to higher ionic strength media, with the exception of 50-nm AgNPs suspended in the 150-µS/cm medium. A 3.3-fold increase in hydrodynamic diameter measured by dynamic light scattering and field flow fractionation was observed over time for 20-nm particles in the 150-µS/cm medium, but only a small increase in aggregation size for 50-nm and 80-nm particles (1.4-fold and 1.2-fold increase, respectively) was observed. At a lower conductivity of 30 µS/cm, a 1.7-fold, 1.0-fold, and 1.2-fold increase in aggregation size was observed in the 20-nm, 50-nm, and 80-nm particles, respectively. Thus, the impact of higher conductivity test media on increased aggregation and decreased toxicity (after 7 d) was relatively greater for the smaller (20-nm) AgNP higher compared to the 50-80 nm AgNPs.


Journal of Nanomaterials & Molecular Nanotechnology | 2013

Nano-Aluminum Thermite Formulations: Characterizing the Fate Properties of a Nanotechnology during Use

Aimee R. Poda; Robert D. Moser; Michael F. Cuddy; Zac Doorenbos; Br; on J. Lafferty; Charles A. Weiss; Ashley R. Harmon; Mark A. Chappell; Jeffery A. Steevens

Nano-Aluminum Thermite Formulations: Characterizing the Fate Properties of a Nanotechnology during Use Nanothermites represent an emerging class of highly efficient propellants/explosive materials whose environmental impacts are poorly understood. In this work, several nanothermite formulations (e.g., Fe2O3/Al and Bi2O3/Al) were investigated following material transformation during end use. Combustion products were analyzed by SEM, EDS, and XRD. These products subsist with unique physical and chemical forms as compared to the original materials. The combustion process results in the formation of inert spinel structures in the case of the iron-based formulations, whereas Bi2O3/Al composites react fully, transforming to metallic bismuth and aluminum oxide. These products are largely resistant to wetting and evidence suggests that transport in aqueous environments would be limited. Due to the particle size ranges found, it is speculated that the main transport route for these materials is aerosolization. These data will ultimately establish a baseline for future studies aimed at an accurate determination of the fate of nanothermite formulations after use.


Journal of Exposure Science and Environmental Epidemiology | 2016

A weight-of-evidence approach to identify nanomaterials in consumer products: a case study of nanoparticles in commercial sunscreens.

Michael F. Cuddy; Aimee R. Poda; Robert D. Moser; Charles A. Weiss; Carolyn Cairns; Jeffery A. Steevens

Nanoscale ingredients in commercial products represent a point of emerging environmental concern due to recent findings that correlate toxicity with small particle size. A weight-of-evidence (WOE) approach based upon multiple lines of evidence (LOE) is developed here to assess nanomaterials as they exist in consumer product formulations, providing a qualitative assessment regarding the presence of nanomaterials, along with a baseline estimate of nanoparticle concentration if nanomaterials do exist. Electron microscopy, analytical separations, and X-ray detection methods were used to identify and characterize nanomaterials in sunscreen formulations. The WOE/LOE approach as applied to four commercial sunscreen products indicated that all four contained at least 10% dispersed primary particles having at least one dimension <100 nm in size. Analytical analyses confirmed that these constituents were comprised of zinc oxide (ZnO) or titanium dioxide (TiO2). The screening approaches developed herein offer a streamlined, facile means to identify potentially hazardous nanomaterial constituents with minimal abrasive processing of the raw material.


Journal of Visualized Experiments | 2014

Characterization of multi-layered fish scales (Atractosteus spatula) using nanoindentation, X-ray CT, FTIR, and SEM.

P.G. Allison; Rogie. I. Rodriguez; Robert D. Moser; Brett A. Williams; Aimee R. Poda; Jennifer M. Seiter; Brandon J. Lafferty; Alan J. Kennedy; Mei Qiang Chandler

The hierarchical architecture of protective biological materials such as mineralized fish scales, gastropod shells, ram’s horn, antlers, and turtle shells provides unique design principles with potentials for guiding the design of protective materials and systems in the future. Understanding the structure-property relationships for these material systems at the microscale and nanoscale where failure initiates is essential. Currently, experimental techniques such as nanoindentation, X-ray CT, and SEM provide researchers with a way to correlate the mechanical behavior with hierarchical microstructures of these material systems1-6. However, a well-defined standard procedure for specimen preparation of mineralized biomaterials is not currently available. In this study, the methods for probing spatially correlated chemical, structural, and mechanical properties of the multilayered scale of A. spatula using nanoindentation, FTIR, SEM, with energy-dispersive X-ray (EDX) microanalysis, and X-ray CT are presented.


Environmental Toxicology and Chemistry | 2017

Aquatic toxicity of photo‐degraded insensitive munition 101 (IMX‐101) constituents

Alan J. Kennedy; Aimee R. Poda; Nicolas L. Melby; Lee C. Moores; Shinita M. Jordan; Kurt A. Gust; Anthony J. Bednar

Insensitive munitions are desirable alternatives to historically used formulations, such as 2,4,6-trinitrotoluene (TNT), because of their so-called insensitivity to unintended detonation. The insensitive munition IMX-101 is a mixture of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). Environmental releases of munitions may be from production wastewaters or training; these munitions may be exposed to ultraviolet (UV) light. Therefore, it is useful to understand the relative toxicity of IMX-101 and its constituents both before and after photodegradation. The intent of the present study was to generate relative hazard information by exposing the standard ecotoxicological model Ceriodaphnia dubia to each insensitive munition constituent individually and to IMX-101 before and after the exposure solution was irradiated in a UV photoreactor. Without photodegradation, DNAN was more toxic (median lethal concentration [LC50] = 43 mg/L) than the other 2 constituents and it contributed predominantly to the toxicity of IMX-101 (LC50 = 206 mg/L) based on toxic units. Toxicity was observed only at high levels of NQ (LC50 = 1174 mg/L) and pH-adjusted NTO (LC50 = 799 mg/L). The toxicity of IMX-101 is lower than literature-reported TNT toxicity. Photodegradation efficiency was greater at lower insensitive munition concentrations. The observed degradation was greatest for NQ (42-99%), which in turn corresponded to the greatest relative increase in toxicity (100-1000-fold). Modest percent of degradation (4-18%) and increases in phototoxicity (2-100-fold) were observed for NTO and DNAN. Photodegraded NQ products were the predominant source of toxicity of photodegraded IMX-101. Future work involves research to enable analytical and computational confirmation of the specific degradation compounds inducing the observed photoenhanced toxicity. Environ Toxicol Chem 2017;36:2050-2057. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

Collaboration


Dive into the Aimee R. Poda's collaboration.

Top Co-Authors

Avatar

Alan J. Kennedy

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Michael F. Cuddy

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Bednar

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Robert D. Moser

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Jeffery A. Steevens

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Ashley R. Harmon

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Christopher Warner

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Edward J. Perkins

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Eftihia Barnes

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge