Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony J. Bednar is active.

Publication


Featured researches published by Anthony J. Bednar.


Environmental Toxicology and Chemistry | 2012

Detecting nanoparticulate silver using single‐particle inductively coupled plasma–mass spectrometry

Denise M. Mitrano; Emily K. Lesher; Anthony J. Bednar; Jon H. Monserud; Christopher P. Higgins; James F. Ranville

The environmental prevalence of engineered nanomaterials, particularly nanoparticulate silver (AgNP), is expected to increase substantially. The ubiquitous use of commercial products containing AgNP may result in their release to the environment, and the potential for ecological effects is unknown. Detecting engineered nanomaterials is one of the greatest challenges in quantifying their risks. Thus, it is imperative to develop techniques capable of measuring and characterizing exposures, while dealing with the innate difficulties of nanomaterial detection in environmental samples, such as low-engineered nanomaterial concentrations, aggregation, and complex matrices. Here the authors demonstrate the use of inductively coupled plasma-mass spectrometry, operated in a single-particle counting mode (SP-ICP-MS), to detect and quantify AgNP. In the present study, two AgNP products were measured by SP-ICP-MS, including one of precisely manufactured size and shape, as well as a commercial AgNP-containing health food product. Serial dilutions, filtration, and acidification were applied to confirm that the method detected particles. Differentiation of dissolved and particulate silver (Ag) is a feature of the technique. Analysis of two wastewater samples demonstrated the applicability of SP-ICP-MS at nanograms per liter Ag concentrations. In this pilot study, AgNP was found at 100 to 200 ng/L in the presence of 50 to 500 ng/L dissolved Ag. The method provides the analytical capability to monitor Ag and other metal and metal oxide nanoparticles in fate, transport, stability, and toxicity studies using a commonly available laboratory instrument. Rapid throughput and element specificity are additional benefits of SP-ICP-MS as a measurement tool for metal and metal oxide engineered nanoparticles.


Environmental Science & Technology | 2010

Fractionating Nanosilver: Importance for Determining Toxicity to Aquatic Test Organisms

Alan J. Kennedy; Matthew S. Hull; Anthony J. Bednar; Jennifer D. Goss; Jonas C. Gunter; Jennifer L. Bouldin; Peter J. Vikesland; Jeffery A. Steevens

This investigation applied novel techniques for characterizing and fractionating nanosilver particles and aggregates and relating these measurements to toxicological endpoints. The acute toxicity of eight nanosilver suspensions of varying primary particle sizes (10-80 nm) and coatings (citrate, polyvinylpyrrolidone, EDTA, proprietary) was assessed using three aquatic test organisms (Daphnia magna, Pimephales promelas, Pseudokirchneriella subcapitata). When 48-h lethal median concentrations (LC50) were expressed as total silver, both D. magna and P. promelas were significantly more sensitive to ionic silver (Ag(+)) as AgNO(3) (mean LC50 = 1.2 and 6.3 μg/L, respectively) relative to a wide range in LC50 values determined for the nanosilver suspensions (2 -126 μg/L). However, when LC50 values for nanosilver suspensions were expressed as fractionated nanosilver (Ag(+) and/or <4 nm particles), determined by ultracentrifugation of particles and confirmed field-flow-fractograms, the LC50 values (0.3-5.6 μg/L) were comparable to the values obtained for ionic Ag(+) as AgNO(3). These results suggest that dissolved Ag(+) plays a critical role in acute toxicity and underscores the importance of characterizing dissolved fractions in nanometal suspensions.


Ecotoxicology | 2012

Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far?

Richard D. Handy; Nico W. van den Brink; Mark A. Chappell; Martin Mühling; Renata Behra; Maria Dusinska; Peter Simpson; Jukka Ahtiainen; Awadhesh N. Jha; Jennifer M. Seiter; Anthony J. Bednar; Alan J. Kennedy; Teresa F. Fernandes; Michael Riediker

This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench.


Journal of Analytical Atomic Spectrometry | 2012

Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS)

Denise M. Mitrano; Angela Barber; Anthony J. Bednar; Paul Westerhoff; Christopher P. Higgins; James F. Ranville

Methods to detect, quantify, and characterize engineered nanoparticles (ENPs) in environmental matrices are highlighted as one of the areas of highest priority research needs with respect to understanding the potential environmental risks associated with nanomaterials. More specifically, techniques are needed to determine the size and concentration of ENPs in a variety of complex matrices. Furthermore, data should be collected at environmentally and toxicologically relevant concentrations. Both single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) and asymmetrical flow field flow fractionation (AF4) ICP-MS offer substantial advantages for detecting ENPs and assessing many of the above parameters in complex matrices over traditional characterization methods such as microscopy, light scattering, and filtration. In this study, we compared the ability of two emerging techniques to detect well characterized, monodisperse silver ENPs and examined their overall applicability to environmental studies specifically with respect to their: (A) size and concentration detection limits, (B) resolution and (C) multi-form elemental analysis. We find that in terms of concentration detection limit (both, on a mass basis and particle number basis) SP-ICP-MS was considerably more sensitive than AF4-ICP-MS (ng L−1vs. μg L−1, respectively), and offers the unique ability to differentiate dissolved and nanoparticulate fractions of total metal. With a variety of optimization parameters possible, AF4-ICP-MS can detect a much smaller NP size (2 nm vs. 20 nm for SP-ICP-MS), provides the possibility for greater size resolution.


Journal of Chromatography A | 2011

Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry

Aimee R. Poda; Anthony J. Bednar; Alan J. Kennedy; Ashley R. Harmon; M. Hull; D.M. Mitrano; James F. Ranville; Jeffery A. Steevens

The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.


Environmental Science & Technology | 2013

Extraction and Analysis of Silver and Gold Nanoparticles from Biological Tissues Using Single Particle Inductively Coupled Plasma Mass Spectrometry

Evan P. Gray; Jessica G. Coleman; Anthony J. Bednar; Alan J. Kennedy; James F. Ranville; Christopher P. Higgins

Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.


Environmental Science & Technology | 2012

Impact of Organic Carbon on the Stability and Toxicity of Fresh and Stored Silver Nanoparticles

Alan J. Kennedy; Mark A. Chappell; Anthony J. Bednar; Adam C. Ryan; Jennifer G. Laird; Jacob K. Stanley; Jeffery A. Steevens

Studies investigating the impact of particle size and capping agents on nanosilver toxicity in pristine laboratory conditions are becoming available. However, the relative importance of known environmental mitigating factors for dissolved silver remains poorly characterized for nanosilver in context with existing predictive toxicity models. This study investigated the implications of freshly prepared versus stored 20 and 100 nm nanosilver stocks to freshwater zooplankton (Ceriodaphnia dubia) in presence and absence of dissolved organic carbon (DOC). Results indicated that while the acute toxicity of nanosilver decreased significantly with larger size and higher DOC, storage resulted in significant increases in toxicity and ion release. The most dramatic decrease in toxicity due to DOC was observed for the 20 nm particle (2.5-6.7 fold decrease), with more modest toxicity reductions observed for the 100 nm particle (2.0-2.4 fold) and dissolved silver (2.7-3.1 fold). While a surface area dosimetry presented an improvement over mass when DOC was absent, the presence of DOC confounded its efficacy. The fraction of dissolved silver in the nanosilver suspensions was most predictive of acute toxicity regardless of system complexity. Biotic Ligand Model (BLM) predictions based on the dissolved fraction in nanosilver suspensions were comparable to observed toxicity.


Environmental Toxicology and Chemistry | 2010

Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida

Jessica G. Coleman; David R. Johnson; Jacob K. Stanley; Anthony J. Bednar; Charles A. Weiss; Robert E. Boyd; Jeffery A. Steevens

Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50-200 microm, nominal) and nano-sized (11 nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3-spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at >or=3,000 mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300 mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000 mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment.


Environmental science. Nano | 2014

Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS)

Denise M. Mitrano; James F. Ranville; Anthony J. Bednar; K. Kazor; A. S. Hering; Christopher P. Higgins

The interplay between engineered nanoparticle (ENP) size, surface area, and dissolution rate is critical in predicting ENP environmental behavior. Single particle inductively coupled plasma mass spectrometry (spICP-MS) enables the study of ENPs at dilute (ng L−1) concentrations, facilitating the measurement of ENP behavior in natural systems. Here, the utility of using spICP-MS to quantitatively track the changes in particle diameter over time for 60 and 100 nm Ag ENPs (citrate, tannic acid, and polyvinylpyrrolidone coated) was demonstrated. Short term (<24 h) and intermediate term (1 week) dissolution was examined, with rates for all particles slowing by over an order of magnitude after approximately 24 h. Dissolution was measured primarily as a decrease in particle diameter over time but direct measurement of Ag+(aq) was also completed for the experiments. The importance of water chemistry including chloride, sulfide, and dissolved organic carbon (DOC) was demonstrated, with higher concentrations (1 mg L−1 Cl−, S2− and 20 mg L−1 DOC) resulting in negligible Ag ENP dissolution over 24 h. Slight decreases in particle diameter (<10%) were observed with lower concentrations of these parameters (stoichiometric Cl−, S2− and 2 mg L−1 DOC). Capping agents showed variable effects on dissolution. ENP behavior was also investigated in natural (moderately hard water, creek water) and tap water. Water chemistry was the most significant factor affecting dissolution. Near complete dissolution was observed in chlorinated tap water within several hours. Though modeled as first-order kinetic transformations, the dissolution rates observed suggested the dissolution kinetics might be significantly more complex. Two specific highlights of the benefits of using the spICP-MS technique to measure dissolution in complex samples include 1) the measurement of primary particle size as the metric of dissolution is more direct than attempting to measure the increase of Ag+ in solution and 2) that this is possible even when known sinks for Ag+ exist in the system (e.g. DOC, sediments, biota, sampling container).


Journal of Chemical Physics | 2007

Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure

Richard W. Haskins; Robert S. Maier; Robert M. Ebeling; Charles P. Marsh; Dustin L. Majure; Anthony J. Bednar; Charles R. Welch; Bruce C. Barker; David T. Wu

We performed tight-binding molecular dynamics on single-walled carbon nanotubes with and without a variety of defects to study their effect on the nanotube modulus and failure through bond rupture. For a pristine (5,5) nanotube, Youngs modulus was calculated to be approximately 1.1 TPa, and brittle rupture occurred at a strain of 17% under quasistatic loading. The predicted modulus is consistent with values from experimentally derived thermal vibration and pull test measurements. The defects studied consist of moving or removing one or two carbon atoms, and correspond to a 1.4% defect density. The occurrence of a Stone-Wales defect does not significantly affect Youngs modulus, but failure occurs at 15% strain. The occurrence of a pair of separated vacancy defects lowers Youngs modulus by approximately 160 GPa and the critical or rupture strain to 13%. These defects apparently act independently, since one of these defects alone was independently determined to lower Youngs modulus by approximately 90 GPa, also with a critical strain of 13%. When the pair of vacancy defects adjacent, however, Youngs modulus is lowered by only approximately 100 GPa, but with a lower critical strain of 11%. In all cases, there is noticeable strain softening, for instance, leading to an approximately 250 GPa drop in the apparent secant modulus at 10% strain. When a chiral (10,5) nanotube with a vacancy defect was subjected to tensile strain, failure occurred through a continuous spiral-tearing mechanism that maintained a high level of stress (2.5 GPa) even as the nanotube unraveled. Since the statistical likelihood of defects occurring near each other increases with nanotube length, these studies may have important implications for interpreting the experimental distribution of moduli and critical strains.

Collaboration


Dive into the Anthony J. Bednar's collaboration.

Top Co-Authors

Avatar

Alan J. Kennedy

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Jeffery A. Steevens

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Mark A. Chappell

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer M. Seiter

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Aimee R. Poda

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Amber L. Russell

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob K. Stanley

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Jessica G. Coleman

Engineer Research and Development Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge