Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aiming Yan is active.

Publication


Featured researches published by Aiming Yan.


Science | 2015

High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction

Xiaoqing Huang; Zipeng Zhao; Liang Cao; Y. Chen; Enbo Zhu; Zhaoyang Lin; Mufan Li; Aiming Yan; Alex Zettl; Y. Morris Wang; Xiangfeng Duan; Tim Mueller; Yu Huang

Molybdenum doping drives high activity Platinum (Pt) is an effective catalyst of the oxygen reduction reaction in fuel cells but is scarce. One approach to extend Pt availability is to alloy it with more abundant metals such as nickel (Ni). Although these catalysts can be highly active, they are often not durable because of Ni loss. Huang et al. show that doping the surface of octahedral Pt3Ni nanocrystals with molybdenum not only leads to high activity (∼80 times that of a commercial catalyst) but enhances their stability. Science, this issue p. 1230 Molybdenum-doped platinum-nickel nanocrystal catalysts exhibit high activity and durability for a key fuel cell reaction. Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M‐Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo‐Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm2 and mass activity of 6.98 A/mgPt, which are 81- and 73‐fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm2 and 0.096 A/mgPt). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.


Nano Letters | 2015

Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles.

Aiming Yan; Jairo Velasco; Salman Kahn; Kenji Watanabe; Takashi Taniguchi; Feng Wang; Michael F. Crommie; Alex Zettl

Monolayer molybdenum disulfide (MoS2) is a promising two-dimensional direct-bandgap semiconductor with potential applications in atomically thin and flexible electronics. An attractive insulating substrate or mate for MoS2 (and related materials such as graphene) is hexagonal boron nitride (h-BN). Stacked heterostructures of MoS2 and h-BN have been produced by manual transfer methods, but a more efficient and scalable assembly method is needed. Here we demonstrate the direct growth of single- and few-layer MoS2 on h-BN by chemical vapor deposition (CVD) method, which is scalable with suitably structured substrates. The growth mechanisms for single-layer and few-layer samples are found to be distinct, and for single-layer samples low relative rotation angles (<5°) between the MoS2 and h-BN lattices prevail. Moreover, MoS2 directly grown on h-BN maintains its intrinsic 1.89 eV bandgap. Our CVD synthesis method presents an important advancement toward controllable and scalable MoS2-based electronic devices.


ACS Nano | 2014

Synthesis and characterization of highly crystalline graphene aerogels.

Marcus A. Worsley; Thang Pham; Aiming Yan; Swanee J. Shin; Jonathan R. I. Lee; Michael Bagge-Hansen; William Mickelson; Alex Zettl

Aerogels are used in a broad range of scientific and industrial applications due to their large surface areas, ultrafine pore sizes, and extremely low densities. Recently, a large number of reports have described graphene aerogels based on the reduction of graphene oxide (GO). Though these GO-based aerogels represent a considerable advance relative to traditional carbon aerogels, they remain significantly inferior to individual graphene sheets due to their poor crystallinity. Here, we report a straightforward method to synthesize highly crystalline GO-based graphene aerogels via high-temperature processing common in commercial graphite production. The crystallization of the graphene aerogels versus annealing temperature is characterized using Raman and X-ray absorption spectroscopy, X-ray diffraction, and electron microscopy. Nitrogen porosimetry shows that the highly crystalline graphene macrostructure maintains a high surface area and ultrafine pore size. Because of their enhanced crystallinity, these graphene aerogels exhibit a ∼ 200 °C improvement in oxidation temperature and an order of magnitude increase in electrical conductivity.


Advanced Materials | 2015

Self-Passivation of Defects: Effects of High-Energy Particle Irradiation on the Elastic Modulus of Multilayer Graphene.

Kai Liu; Cheng Lun Hsin; Deyi Fu; Joonki Suh; Sefaattin Tongay; Michelle Y. Chen; Yinghui Sun; Aiming Yan; Joonsuk Park; Kin Man Yu; Wenli Guo; Alex Zettl; Haimei Zheng; D. C. Chrzan; J. Wu

The elastic modulus of multilayer graphene is found to be more robust to damage created by high-energy α-particle irradiation as compared to monolayer graphene. Theoretical analysis indicates that irradiation of multilayer graphene generates interlayer links that potentially increase the stiffness of the multilayer by passivating local defects.


Nano Letters | 2015

C60/Collapsed Carbon Nanotube Hybrids : A Variant of Peapods

Hamid Reza Barzegar; Eduardo Gracia-Espino; Aiming Yan; Claudia Ojeda-Aristizabal; Gabriel Dunn; Thomas Wågberg; Alex Zettl

We examine a variant of so-called carbon nanotube peapods by packing C60 molecules inside the open edge ducts of collapsed carbon nanotubes. C60 insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C60 over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C60 solid cores.


ACS Nano | 2015

Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets

Eduardo Gracia-Espino; Hamid Reza Barzegar; Tiva Sharifi; Aiming Yan; Alex Zettl; Thomas Wågberg

One-dimensional (1D) zigzag [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoribbons are produced by folding two-dimensional ultrathin PCBM nanosheets in a simple solvent process. The unique 1D PCBM nanostructures exhibit uniform width of 3.8 ± 0.3 nm, equivalent to four PCBM molecules, and lengths of 20-400 nm. These nanoribbons show well-defined crystalline structure, comprising PCBM molecules in a hexagonal arrangement without trapped solvent molecules. First-principle calculations and detailed experimental characterization provide an insight into the structure and formation mechanism of the 1D PCBM nanoribbons. Given their dimensions and physical properties, we foresee that these nanostructures should be ideal as acceptor material in organic solar cells.


ACS Nano | 2017

Molecular Arrangement and Charge Transfer in C60/Graphene Heterostructures

Claudia Ojeda-Aristizabal; Elton J. G. Santos; Seita Onishi; Aiming Yan; Haider I. Rasool; Salman Kahn; Yinchuan Lv; Drew Latzke; Jairo Velasco; Michael F. Crommie; Matthew Sorensen; Kenneth Gotlieb; Chiu-Yun Lin; Kenji Watanabe; Takashi Taniguchi; Alessandra Lanzara; Alex Zettl

Charge transfer at the interface between dissimilar materials is at the heart of electronics and photovoltaics. Here we study the molecular orientation, electronic structure, and local charge transfer at the interface region of C60 deposited on graphene, with and without supporting substrates such as hexagonal boron nitride. We employ ab initio density functional theory with van der Waals interactions and experimentally characterize interface devices using high-resolution transmission electron microscopy and electronic transport. Charge transfer between C60 and the graphene is found to be sensitive to the nature of the underlying supporting substrate and to the crystallinity and local orientation of the C60. Even at room temperature, C60 molecules interfaced to graphene are orientationally locked into position. High electron and hole mobilities are preserved in graphene with crystalline C60 overlayers, which has ramifications for organic high-mobility field-effect devices.


Physical Review Letters | 2017

Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

Kaiyuan Yao; Aiming Yan; Salman Kahn; Aslihan Suslu; Yufeng Liang; Edward S. Barnard; Sefaattin Tongay; Alex Zettl; Nicholas J. Borys; P. James Schuck

Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.


Nano Research | 2017

Spontaneous twisting of a collapsed carbon nanotube

Hamid Reza Barzegar; Aiming Yan; Sinisa Coh; Eduardo Gracia-Espino; Claudia Ojeda-Aristizabal; Gabriel Dunn; Marvin L. Cohen; Steven G. Louie; Thomas Wågberg; Alex Zettl

We study the collapsing and subsequent spontaneous twisting of a carbon nanotube by in situ transmission electron microscopy (TEM). A custom-sized nanotube is first created in the microscope by selectively extracting shells from a parent multi-walled tube. The few-walled, large-diameter daughter nanotube is driven to collapse via mechanical stimulation, after which the ribbon-like collapsed tube spontaneously twists along its long axis. In situ diffraction experiments fully characterize the uncollapsed and collapsed tubes. The experimental observations and associated theoretical analysis indicate that the origin of the twisting is compressive strain.


Advanced Materials | 2017

Preventing Thin Film Dewetting via Graphene Capping

Peigen Cao; Peter Bai; Arash A. Omrani; Yihan Xiao; Kacey Meaker; Hsin-Zon Tsai; Aiming Yan; Han Sae Jung; Ramin Khajeh; Griffin F. Rodgers; Youngkyou Kim; Andrew S. Aikawa; Mattew A. Kolaczkowski; Yi Liu; Alex Zettl; Ke Xu; Michael F. Crommie; Ting Xu

A monolayer 2D capping layer with high Youngs modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS2 on PS. Thermodynamic modeling indicates that the exceptionally high Youngs modulus and surface conformity of 2D capping layers such as graphene and MoS2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties.

Collaboration


Dive into the Aiming Yan's collaboration.

Top Co-Authors

Avatar

Alex Zettl

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Dunn

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael F. Crommie

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Salman Kahn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jairo Velasco

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge