Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Zettl is active.

Publication


Featured researches published by Alex Zettl.


Science | 1995

Boron Nitride Nanotubes

Nasreen G. Chopra; R. J. Luyken; K. Cherrey; Vincent H. Crespi; Marvin L. Cohen; Steven G. Louie; Alex Zettl

The successful synthesis of pure boron nitride (BN) nanotubes is reported here. Multi-walled tubes with inner diameters on the order of 1 to 3 nanometers and with lengths up to 200 nanometers were produced in a carbon-free plasma discharge between a BN-packed tungsten rod and a cooled copper electrode. Electron energy-loss spectroscopy on individual tubes yielded B:N ratios of approximately 1, which is consistent with theoretical predictions of stable BN tube structures.


Nature | 2009

Direct observation of a widely tunable bandgap in bilayer graphene.

Yuanbo Zhang; Tsung-Ta Tang; Caglar Girit; Zhao Hao; Michael C. Martin; Alex Zettl; Michael F. Crommie; Y. Ron Shen; Feng Wang

The electronic bandgap is an intrinsic property of semiconductors and insulators that largely determines their transport and optical properties. As such, it has a central role in modern device physics and technology and governs the operation of semiconductor devices such as p–n junctions, transistors, photodiodes and lasers. A tunable bandgap would be highly desirable because it would allow great flexibility in design and optimization of such devices, in particular if it could be tuned by applying a variable external electric field. However, in conventional materials, the bandgap is fixed by their crystalline structure, preventing such bandgap control. Here we demonstrate the realization of a widely tunable electronic bandgap in electrically gated bilayer graphene. Using a dual-gate bilayer graphene field-effect transistor (FET) and infrared microspectroscopy, we demonstrate a gate-controlled, continuously tunable bandgap of up to 250 meV. Our technique avoids uncontrolled chemical doping and provides direct evidence of a widely tunable bandgap—spanning a spectral range from zero to mid-infrared—that has eluded previous attempts. Combined with the remarkable electrical transport properties of such systems, this electrostatic bandgap control suggests novel nanoelectronic and nanophotonic device applications based on graphene.


Science | 2008

Gate-Variable Optical Transitions in Graphene

Feng Wang; Yuanbo Zhang; Chuanshan Tian; Caglar Girit; Alex Zettl; Michael F. Crommie; Y. Ron Shen

Two-dimensional graphene monolayers and bilayers exhibit fascinating electrical transport behaviors. Using infrared spectroscopy, we find that they also have strong interband transitions and that their optical transitions can be substantially modified through electrical gating, much like electrical transport in field-effect transistors. This gate dependence of interband transitions adds a valuable dimension for optically probing graphene band structure. For a graphene monolayer, it yields directly the linear band dispersion of Dirac fermions, whereas in a bilayer, it reveals a dominating van Hove singularity arising from interlayer coupling. The strong and layer-dependent optical transitions of graphene and the tunability by simple electrical gating hold promise for new applications in infrared optics and optoelectronics.


Nature | 2003

Rotational actuators based on carbon nanotubes.

Adam Michael Fennimore; Thomas D. Yuzvinsky; Wei-Qiang Han; Michael S. Fuhrer; John Cumings; Alex Zettl

Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic devices are now emerging that set the stage for future integrated nanoelectronics. Recently, there have been dramatic parallel advances in the miniaturization of mechanical and electromechanical devices. Commercial microelectromechanical systems now reach the submillimetre to micrometre size scale, and there is intense interest in the creation of next-generation synthetic nanometre-scale electromechanical systems. We report on the construction and successful operation of a fully synthetic nanoscale electromechanical actuator incorporating a rotatable metal plate, with a multi-walled carbon nanotube serving as the key motion-enabling element.


Science | 2009

Graphene at the Edge: Stability and Dynamics

Caglar Girit; Jannik C. Meyer; Rolf Erni; Marta D. Rossell; C. Kisielowski; Li Yang; Cheol-Hwan Park; M. F. Crommie; Marvin L. Cohen; Steven G. Louie; Alex Zettl

Although the physics of materials at surfaces and edges has been extensively studied, the movement of individual atoms at an isolated edge has not been directly observed in real time. With a transmission electron aberration–corrected microscope capable of simultaneous atomic spatial resolution and 1-second temporal resolution, we produced movies of the dynamics of carbon atoms at the edge of a hole in a suspended, single atomic layer of graphene. The rearrangement of bonds and beam-induced ejection of carbon atoms are recorded as the hole grows. We investigated the mechanism of edge reconstruction and demonstrated the stability of the “zigzag” edge configuration. This study of an ideal low-dimensional interface, a hole in graphene, exhibits the complex behavior of atoms at a boundary.


Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2002

Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes

B.G Demczyk; Yang Wang; John Cumings; M Hetman; Wei-Qiang Han; Alex Zettl; Robert O. Ritchie

Abstract We have conducted pulling and bending tests on individual carbon nanotubes in-situ in a transition electron microscope. Based on our observation of the force required to break the tube, a tensile strength of 0.15 TPa was computed. From corresponding bending studies on such nanotubes, the Youngs modulus was estimated to be 0.9 TPa (0.8 TPa after ‘sub continuum’ corrections). These results suggest a strength that is a large fraction of the elastic modulus, although previous measurements of their elastic stiffness have yielded higher modulus values, by as much as a factor of 2. The result does indicate that individual nanotubes can fail as essentially defect-free materials. Furthermore, we observed no obvious reduction in cross-sectional area prior to the failure. In addition, the bending experiments revealed a remarkable flexibility in these tubes. These unique properties support the potential of nanotubes as reinforcement fibers in structural materials.


Nano Letters | 2008

Direct imaging of lattice atoms and topological defects in graphene membranes.

Jannik C. Meyer; C. Kisielowski; Rolf Erni; Marta D. Rossell; M. F. Crommie; Alex Zettl

We present a transmission electron microscopy investigation of graphene membranes, crystalline foils with a thickness of only 1 atom. By using aberration-correction in combination with a monochromator, 1-A resolution is achieved at an acceleration voltage of only 80 kV. The low voltage is crucial for the stability of these membranes. As a result, every individual carbon atom in the field of view is detected and resolved. We observe a highly crystalline lattice along with occasional point defects. The formation and annealing of Stone-Wales defects is observed in situ. Multiple five- and seven-membered rings appear exclusively in combinations that avoid dislocations and disclinations, in contrast to previous observations on highly curved (tube- or fullerene-like) graphene surfaces.


Nature Nanotechnology | 2008

An atomic-resolution nanomechanical mass sensor

K. Jensen; Kwanpyo Kim; Alex Zettl

Mechanical resonators are widely used as inertial balances to detect small quantities of adsorbed mass through shifts in oscillation frequency. Advances in lithography and materials synthesis have enabled the fabrication of nanoscale mechanical resonators, which have been operated as precision force, position and mass sensors. Here we demonstrate a room-temperature, carbon-nanotube-based nanomechanical resonator with atomic mass resolution. This device is essentially a mass spectrometer with a mass sensitivity of 1.3 x 10(-25) kg Hz(-1/2) or, equivalently, 0.40 gold atoms Hz(-1/2). Using this extreme mass sensitivity, we observe atomic mass shot noise, which is analogous to the electronic shot noise measured in many semiconductor experiments. Unlike traditional mass spectrometers, nanomechanical mass spectrometers do not require the potentially destructive ionization of the test sample, are more sensitive to large molecules, and could eventually be incorporated on a chip.


Advanced Materials | 2010

Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide

Kris Erickson; Rolf Erni; Zonghoon Lee; Nasim Alem; Will Gannett; Alex Zettl

www.MaterialsViews.com C O M M Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide U N IC A By Kris Erickson , Rolf Erni , Zonghoon Lee , Nasim Alem , Will Gannett , and Alex Zettl * IO N Although the unique electronic and mechanical properties of graphene suggest numerous intriguing applications, the requisite large-scale direct synthesis and solution-based handling have proven diffi cult. [ 1 , 2 ] It has been suggested that a functionalized form of graphene, graphene oxide (GO), could provide a solution-friendly route to facile, high-throughput graphene manipulation. [ 2 ] For such a route to be viable, however, GO must be convertible back to graphene, ostensibly via chemical reduction and thermal annealing. Unfortunately, transport measurements indicate that the reconstituted material, reduced and annealed graphene oxide (raGO), has electrical conductivity orders of magnitude lower than that of graphene. [ 2 , 3 ] This raises the question: can oxidized graphene be effectively converted back to graphene, and if not, what can it be converted to? Central to this question are the detailed atomic structures of GO and raGO, which, despite their importance, remain largely unknown. [ 4 ] We present here ultra-high-resolution transmission electron microscopy (TEM) images and dynamics studies of suspended sheets of graphene, GO, and raGO, obtained using aberration-corrected instrumentation. It should be noted that both the label GO and raGO (also referred to as “chemically converted graphene”) [ 5 ] refer to a wide variety of materials with the properties of each material being largely dependent upon the particular synthetic route employed. This study presents one particular synthetic method for GO and raGO. Among the various methods possible for synthesizing GO and raGO, we followed methods which have yielded the highest reported fi nal conductivities, as this material would be most suitable as a potential graphene alternative. [ 2 , 6–11 ] The local and global structure and stability of GO and raGO are revealed. We fi nd that the raGO material under study is greatly structurally dissimilar to graphene, being unstable under signifi cant electron beam


Science | 2015

High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction

Xiaoqing Huang; Zipeng Zhao; Liang Cao; Y. Chen; Enbo Zhu; Zhaoyang Lin; Mufan Li; Aiming Yan; Alex Zettl; Y. Morris Wang; Xiangfeng Duan; Tim Mueller; Yu Huang

Molybdenum doping drives high activity Platinum (Pt) is an effective catalyst of the oxygen reduction reaction in fuel cells but is scarce. One approach to extend Pt availability is to alloy it with more abundant metals such as nickel (Ni). Although these catalysts can be highly active, they are often not durable because of Ni loss. Huang et al. show that doping the surface of octahedral Pt3Ni nanocrystals with molybdenum not only leads to high activity (∼80 times that of a commercial catalyst) but enhances their stability. Science, this issue p. 1230 Molybdenum-doped platinum-nickel nanocrystal catalysts exhibit high activity and durability for a key fuel cell reaction. Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M‐Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo‐Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm2 and mass activity of 6.98 A/mgPt, which are 81- and 73‐fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm2 and 0.096 A/mgPt). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.

Collaboration


Dive into the Alex Zettl's collaboration.

Top Co-Authors

Avatar

Michael F. Crommie

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Shaul Aloni

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Caglar Girit

University of California

View shared research outputs
Top Co-Authors

Avatar

Hsin-Zon Tsai

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Watanabe

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

William Regan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge