Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aiping Qin is active.

Publication


Featured researches published by Aiping Qin.


BMC Microbiology | 2006

Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2

Aiping Qin; Barbara J. Mann

BackgroundFrancisella tularensis is a zoonotic intracellular bacterial pathogen that causes tularemia. The subspecies tularensis is highly virulent and is classified as a category A agent of biological warfare because of its low infectious dose by an aerosol route, and its ability to cause severe disease. In macrophages F. tularensis exhibits a rather novel intracellular lifestyle; after invasion it remains in a phagosome for three to six hours before escaping to, and replicating in the cytoplasm. The molecular mechanisms that allow F. tularensis to invade and replicate within a host cell have not been well defined.MethodsWe constructed a stable transposon mutagenesis library of virulent strain Schu S4 using a derivative of the EZ::TN transposon system®. Approximately 2000 mutants were screened for the inability to invade, and replicate in the hepatic carcinoma cell line HepG2. These mutants were also tested for replication within the J774.1 macrophage-like cell line.ResultsEighteen mutants defective in intracellular replication in HepG2 cells were identified. Eight of these mutants were auxotrophs; seven had mutations in nucleotide biosynthesis pathways. The remaining mutants had insertions in genes that were predicted to encode putative transporters, enzymes involved in protein modification and turnover, and hypothetical proteins. A time course of the intracellular growth of a pyrB mutant revealed that this mutant was only able to grow at low levels within HepG2 cells but grew like wild-type bacteria in J774.1 cells. This pyrB mutant was also attenuated in mice.ConclusionThis is the first reported large-scale mutagenesis of a type A strain of F. tularensis and the first identification of mutants specifically defective in intracellular growth in a hepatic cell line. We have identified several genes and pathways that are key for the survival and growth of F. tularensis in a hepatic cell line, and a number of novel intracellular growth-defective mutants that have not been previously characterized in other pathogens. Further characterization of these mutants will help provide a better understanding of the pathogenicity of F. tularensis, and may have practical applications as targets for drugs or attenuated vaccines.


Infection and Immunity | 2009

Identification of an Essential Francisella tularensis subsp. tularensis Virulence Factor

Aiping Qin; David W. Scott; Jennifer A. Thompson; Barbara J. Mann

ABSTRACT Francisella tularensis, the highly virulent etiologic agent of tularemia, is a low-dose intracellular pathogen that is able to escape from the phagosome and replicate in the cytosol. Although there has been progress in identifying loci involved in the pathogenicity of this organism, analysis of the genome sequence has revealed few obvious virulence factors. We previously reported isolation of an F. tularensis subsp. tularensis strain Schu S4 transposon insertion mutant with a mutation in a predicted hypothetical lipoprotein, FTT1103, that was deficient in intracellular replication in HepG2 cells. In this study, a mutant with a defined nonpolar deletion in FTT1103 was created, and its phenotype, virulence, and vaccine potential were characterized. A phagosomal integrity assay and lysosome-associated membrane protein 1 colocalization revealed that ΔFTT1103 mutant bacteria were defective in phagosomal escape. FTT1103 mutant bacteria were maximally attenuated in the mouse model; mice survived, without visible signs of illness, challenge by more than 1010 CFU when the intranasal route was used and challenge by 106 CFU when the intraperitoneal, subcutaneous, or intravenous route was used. The FTT1103 mutant bacteria exhibited dissemination defects. Mice that were infected by the intranasal route had low levels of bacteria in their livers and spleens, and these bacteria were cleared by 3 days postinfection. Mutant bacteria inoculated by the subcutaneous route failed to disseminate to the lungs. BALB/c or C57BL/6 mice that were intranasally vaccinated with 108 CFU of FTT1103 mutant bacteria were protected against subsequent challenge with wild-type strain Schu S4. These experiments identified the FTT1103 protein as an essential virulence factor and also demonstrated the feasibility of creating defined attenuated vaccines based on a type A strain.


Infection and Immunity | 2008

Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence.

Aiping Qin; David W. Scott; Barbara J. Mann

ABSTRACT Francisella tularensis subsp. tularensis is a highly virulent bacterium that is a CDC select agent. Despite advancements in the understanding of its biology, details pertaining to virulence are poorly understood. In previous work, we identified a transposon insertion mutant in the FTT0107c locus that was defective in intracellular survival in HepG2 and J77A.1 cells. Here, we report that this mutant was also highly attenuated in vivo. The FTT0107c locus is predicted to encode an ortholog of the disulfide bond formation B protein (DsbB). This designation was confirmed by complementation of an Escherichia coli dsbB mutant. This dsbB mutant of Schu S4 was highly attenuated in mice, but unlike what has been reported for Francisella novicida, intranasal immunization with a sublethal dose did not induce protection against wild-type challenge. dsbB was found to be transcribed in an operon with acrA and acrB, which encode an RND-type efflux pump. However, this pump did not make a significant contribution to virulence because strains with nonpolar deletions in acrA and acrB behaved like wild-type strain Schu S4 with respect to intracellular growth and in vivo virulence. This result is in contrast to a report that an acrB mutant of a live vaccine strain of F. tularensis has decreased virulence in mice. Overall, these results demonstrate key differences between the virulence requirements of Schu S4 and less virulent subspecies of Francisella. We have shown that DsbB is a key participant in intracellular growth and virulence, and our results suggest that there are critical virulence factors that contain disulfide bonds.


BMC Microbiology | 2010

Azithromycin effectiveness against intracellular infections of Francisella

Saira Ahmad; Lyman Hunter; Aiping Qin; Barbara J. Mann; Monique L. van Hoek

BackgroundMacrolide antibiotics are commonly administered for bacterial respiratory illnesses. Azithromycin (Az) is especially noted for extremely high intracellular concentrations achieved within macrophages which is far greater than the serum concentration. Clinical strains of Type B Francisella (F.) tularensis have been reported to be resistant to Az, however our laboratory Francisella strains were found to be sensitive. We hypothesized that different strains/species of Francisella (including Type A) may have different susceptibilities to Az, a widely used and well-tolerated antibiotic.ResultsIn vitro susceptibility testing of Az confirmed that F. tularensis subsp. holarctica Live Vaccine Strain (LVS) (Type B) was not sensitive while F. philomiragia, F. novicida, and Type A F. tularensis (NIH B38 and Schu S4 strain) were susceptible. In J774A.1 mouse macrophage cells infected with F. philomiragia, F. novicida, and F. tularensis LVS, 5 μg/ml Az applied extracellularly eliminated intracellular Francisella infections. A concentration of 25 μg/ml Az was required for Francisella- infected A549 human lung epithelial cells, suggesting that macrophages are more effective at concentrating Az than epithelial cells. Mutants of RND efflux components (tolC and ftlC) in F. novicida demonstrated less sensitivity to Az by MIC than the parental strain, but the tolC disc-inhibition assay demonstrated increased sensitivity, indicating a complex role for the outer-membrane transporter. Mutants of acrA and acrB mutants were less sensitive to Az than the parental strain, suggesting that AcrAB is not critical for the efflux of Az in F. novicida. In contrast, F. tularensis Schu S4 mutants ΔacrB and ΔacrA were more sensitive than the parental strain, indicating that the AcrAB may be important for Az efflux in F. tularensis Schu S4. F. novicida LPS O-antigen mutants (wbtN, wbtE, wbtQ and wbtA) were found to be less sensitive in vitro to Az compared to the wild-type. Az treatment prolonged the survival of Galleria (G.) mellonella infected with Francisella.ConclusionThese studies demonstrate that Type A Francisella strains, as well as F. novicida and F. philomiragia, are sensitive to Az in vitro. Francisella LPS and the RND efflux pump may play a role in Az sensitivity. Az also has antimicrobial activity against intracellular Francisella, suggesting that the intracellular concentration of Az is high enough to be effective against multiple strains/species of Francisella, especially in macrophages. Az treatment prolonged survival an in vivo model of Francisella- infection.


PLOS ONE | 2011

Requirement of the CXXC Motif of Novel Francisella Infectivity Potentiator Protein B FipB, and FipA in Virulence of F. tularensis subsp. tularensis

Aiping Qin; David W. Scott; Meaghan M. Rabideau; Emily A. Moore; Barbara J. Mann

The lipoprotein encoded by the Francisella tularensis subsp. tularensis locus FTT1103 is essential for virulence; an FTT1103 deletion mutant is defective in uptake and intracellular survival, and mice survive high dose challenges of greater than 108 bacteria. This protein has two conserved domains; one is found in a class of virulence proteins called macrophage infectivity potentiator (Mip) proteins, and the other in oxidoreductase Disulfide Bond formation protein A (DsbA)-related proteins. We have designated the protein encoded by FTT1103 as FipB for Francisella infectivity potentiator protein B. The locus FTT1102 (fipA), which is upstream of fipB, also has similarity to same conserved Mip domain. Deletion and site-specific mutants of fipA and fipB were constructed in the Schu S4 strain, and characterized with respect to intracellular replication and in vivo virulence. A nonpolar fipA mutant demonstrated reduced survival in host cells, but was only slightly attenuated in vivo. Although FipB protein was present in a fipA mutant, the abundance of the three isoforms of FipB was altered, suggesting that FipA has a role in post-translational modification of FipB. Similar to many DsbA homologues, FipB contains a cysteine-any amino acid-any amino acid-cysteine (CXXC) motif. This motif was found to be important for FipBs role in virulence; a deletion mutant complemented with a gene encoding a FipB protein in which the first cysteine was changed to an alanine residue (AXXC) failed to restore intracellular survival or in vivo virulence. Complementation with a gene that encoded a CXXA containing FipB protein was significantly defective in intracellular growth; however, only slightly attenuated in vivo.


Journal of Bacteriology | 2014

FipB, an Essential Virulence Factor of Francisella tularensis subsp. tularensis, Has Dual Roles in Disulfide Bond Formation

Aiping Qin; Yan Zhang; Melinda E. Clark; Meaghan M. Rabideau; Luis R. Millan Barea; Barbara J. Mann

FipB, an essential virulence factor of Francisella tularensis, is a lipoprotein with two conserved domains that have similarity to disulfide bond formation A (DsbA) proteins and the amino-terminal dimerization domain of macrophage infectivity potentiator (Mip) proteins, which are proteins with peptidyl-prolyl cis/trans isomerase activity. This combination of conserved domains is unusual, so we further characterized the enzymatic activity and the importance of the Mip domain and lipid modification in virulence. Unlike typical DsbA proteins, which are oxidases, FipB exhibited both oxidase and isomerase activities. FipA, which also shares similarity with Mip proteins, potentiated the isomerase activity of FipB in an in vitro assay and within the bacteria, as measured by increased copper sensitivity. To determine the importance of the Mip domain and lipid modification of FipB, mutants producing FipB proteins that lacked either the Mip domain or the critical cysteine necessary for lipid modification were constructed. Both strains replicated within host cells and retained virulence in mice, though there was some attenuation. FipB formed surface-exposed dimers that were sensitive to dithiothreitol (DTT), dependent on the Mip domain and on at least one cysteine in the active site of the DsbA-like domain. However, these dimers were not essential for virulence, because the Mip deletion mutant, which failed to form dimers, was still able to replicate intracellularly and retained virulence in mice. Thus, the Mip domains of FipB and FipA impart additional isomerase functionality to FipB, but only the DsbA-like domain and oxidase activity are essential for its critical virulence functions.


Clinical and Vaccine Immunology | 2014

Novel Catanionic Surfactant Vesicle Vaccines Protect against Francisella tularensis LVS and Confer Significant Partial Protection against F. tularensis Schu S4 Strain

Katharina Richard; Barbara J. Mann; Lenea Stocker; Eileen M. Barry; Aiping Qin; Leah E. Cole; Matthew T. Hurley; Robert K. Ernst; Suzanne M. Michalek; Daniel C. Stein; Philip DeShong; Stefanie N. Vogel

ABSTRACT Francisella tularensis is a Gram-negative immune-evasive coccobacillus that causes tularemia in humans and animals. A safe and efficacious vaccine that is protective against multiple F. tularensis strains has yet to be developed. In this study, we tested a novel vaccine approach using artificial pathogens, synthetic nanoparticles made from catanionic surfactant vesicles that are functionalized by the incorporation of either F. tularensis type B live vaccine strain (F. tularensis LVS [LVS-V]) or F. tularensis type A Schu S4 strain (F. tularensis Schu S4 [Schu S4-V]) components. The immunization of C57BL/6 mice with “bare” vesicles, which did not express F. tularensis components, partially protected against F. tularensis LVS, presumably through activation of the innate immune response, and yet it failed to protect against the F. tularensis Schu S4 strain. In contrast, immunization with LVS-V fully protected mice against intraperitoneal (i.p.) F. tularensis LVS challenge, while immunization of mice with either LVS-V or Schu S4-V partially protected C57BL/6 mice against an intranasal (i.n.) F. tularensis Schu S4 challenge and significantly increased the mean time to death for nonsurvivors, particularly following the i.n. and heterologous (i.e., i.p./i.n.) routes of immunization. LVS-V immunization, but not immunization with empty vesicles, elicited high levels of IgG against nonlipopolysaccharide (non-LPS) epitopes that were increased after F. tularensis LVS challenge and significantly increased early cytokine production. Antisera from LVS-V-immunized mice conferred passive protection against challenge with F. tularensis LVS. Together, these data indicate that functionalized catanionic surfactant vesicles represent an important and novel tool for the development of a safe and effective F. tularensis subunit vaccine and may be applicable for use with other pathogens.


Virulence | 2016

Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein.

Aiping Qin; Yan Zhang; Melinda E. Clark; Emily A. Moore; Meaghan M. Rabideau; G. Brett Moreau; Barbara J. Mann

ABSTRACT FipB, an essential virulence factor in the highly virulent Schu S4 strain of F. tularensis subsp. tularensis, shares sequence similarity with Disulfide Bond formation (Dsb) proteins, which can have oxidoreductase, isomerase, or chaperone activity. To further explore FipBs role in virulence potential substrates were identified by co-purification and 2D gel electrophoresis, followed by protein sequencing using mass spectrometry. A total of 119 potential substrates were identified. Proteins with predicted enzymatic activity were prevalent, and there were 19 proteins that had been previously identified as impacting virulence. Among the potential substrates were IglC, IglB, and PdpB, three components of the Francisella Type Six Secretion System (T6SS), which is also essential for virulence. T6SS are widespread in Gram-negative pathogens, but have not been reported to be dependent on Dsb-like proteins for assembly or function. The presented results suggest that FipB affects IglB and IglC substrates differently. In a fipB mutant there were differences in free sulfhydryl accessibility of IglC, but not IglB, when compared to wild-type bacteria. However, for both proteins FipB appears to act as a chaperone that facilitates proper folding and conformation. Understanding the role FipB plays the assembly and structure in this T6SS may reveal critical aspects of assembly that are common and novel among this widely distributed class of secretion systems.


PLOS ONE | 2013

Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication.

Audrey Chong; Robert Child; Tara D. Wehrly; Dedeke Rockx-Brouwer; Aiping Qin; Barbara J. Mann; Jean Celli

Francisella tularensis is a highly infectious bacterium whose virulence relies on its ability to rapidly reach the macrophage cytosol and extensively replicate in this compartment. We previously identified a novel Francisella virulence factor, DipA (FTT0369c), which is required for intramacrophage proliferation and survival, and virulence in mice. DipA is a 353 amino acid protein with a Sec-dependent signal peptide, four Sel1-like repeats (SLR), and a C-terminal coiled-coil (CC) domain. Here, we determined through biochemical and localization studies that DipA is a membrane-associated protein exposed on the surface of the prototypical F. tularensis subsp. tularensis strain SchuS4 during macrophage infection. Deletion and substitution mutagenesis showed that the CC domain, but not the SLR motifs, of DipA is required for surface exposure on SchuS4. Complementation of the dipA mutant with either DipA CC or SLR domain mutants did not restore intracellular growth of Francisella , indicating that proper localization and the SLR domains are required for DipA function. Co-immunoprecipitation studies revealed interactions with the Francisella outer membrane protein FopA, suggesting that DipA is part of a membrane-associated complex. Altogether, our findings indicate that DipA is positioned at the host–pathogen interface to influence the intracellular fate of this pathogen.


Fems Immunology and Medical Microbiology | 2015

Characterization of Francisella tularensis Schu S4 defined mutants as live-attenuated vaccine candidates.

Araceli E. Santiago; Barbara J. Mann; Aiping Qin; Aimee L. Cunningham; Leah E. Cole; Christen Grassel; Stefanie N. Vogel; Myron M. Levine; Eileen M. Barry

Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria: FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in murine macrophages and were attenuated in vivo, with an i.n. LD50 > 105 CFU in C57BL/6 mice. However, the gua mutants failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge in mice, and underscore differences between these strains and the animal models in which they are evaluated, and therefore have important implications for vaccine development.

Collaboration


Dive into the Aiping Qin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Zhang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge