Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leah E. Cole is active.

Publication


Featured researches published by Leah E. Cole.


Nature Immunology | 2010

The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses

Vijay A. K. Rathinam; Zhaozhao Jiang; Stephen N. Waggoner; Shrutie Sharma; Leah E. Cole; Lisa Waggoner; Sivapriya Kailasan Vanaja; Brian G. Monks; Sandhya Ganesan; Eicke Latz; Veit Hornung; Stefanie N. Vogel; Eva Szomolanyi-Tsuda; Katherine A. Fitzgerald

Inflammasomes regulate the activity of caspase-1 and the maturation of interleukin 1β (IL-1β) and IL-18. AIM2 has been shown to bind DNA and engage the caspase-1-activating adaptor protein ASC to form a caspase-1-activating inflammasome. Using Aim2-deficient mice, we identify a central role for AIM2 in regulating caspase-1-dependent maturation of IL-1β and IL-18, as well as pyroptosis, in response to synthetic double-stranded DNA. AIM2 was essential for inflammasome activation in response to Francisella tularensis, vaccinia virus and mouse cytomegalovirus and had a partial role in the sensing of Listeria monocytogenes. Moreover, production of IL-18 and natural killer cell–dependent production of interferon-γ, events critical in the early control of virus replication, were dependent on AIM2 during mouse cytomegalovirus infection in vivo. Collectively, our observations demonstrate the importance of AIM2 in the sensing of both bacterial and viral pathogens and in triggering innate immunity.


Journal of Immunology | 2008

Francisella tularensis live vaccine strain induces macrophage alternative activation as a survival mechanism.

Kari Ann Shirey; Leah E. Cole; Achsah D. Keegan; Stefanie N. Vogel

Francisella tularensis (Ft), the causative agent of tularemia, elicits a potent inflammatory response early in infection, yet persists within host macrophages and can be lethal if left unchecked. We report in this study that Ft live vaccine strain (LVS) infection of murine macrophages induced TLR2-dependent expression of alternative activation markers that followed the appearance of classically activated markers. Intraperitoneal infection with Ft LVS also resulted in induction of alternatively activated macrophages (AA-Mφ). Induction of AA-Mφ by treatment of cells with rIL-4 or by infection with Ft LVS promoted replication of intracellular Ftn, in contrast to classically activated (IFN-γ plus LPS) macrophages that promoted intracellular killing of Ft LVS. Ft LVS failed to induce alternative activation in IL-4Rα−/− or STAT6−/− macrophages and prolonged the classical inflammatory response in these cells, resulting in intracellular killing of Ft. Treatment of macrophages with anti-IL-4 and anti-IL-13 Ab blunted Ft-induced AA-Mφ differentiation and resulted in increased expression of IL-12 p70 and decreased bacterial replication. In vivo, Ft-infected IL-4Rα−/− mice exhibited increased survival compared with wild-type mice. Thus, redirection of macrophage differentiation by Ft LVS from a classical to an alternative activation state enables the organism to survive at the expense of the host.


Journal of Immunology | 2006

Immunologic Consequences of Francisella tularensis Live Vaccine Strain Infection: Role of the Innate Immune Response in Infection and Immunity

Leah E. Cole; Karen L. Elkins; Suzanne M. Michalek; Nilofer Qureshi; Linda J. Eaton; Prasad Rallabhandi; Natalia Cuesta; Stefanie N. Vogel

Francisella tularensis (Ft), a Gram-negative intracellular bacterium, is the etiologic agent of tularemia. Although attenuated for humans, i.p. infection of mice with <10 Ft live vaccine strain (LVS) organisms causes lethal infection that resembles human tularemia, whereas the LD50 for an intradermal infection is >106 organisms. To examine the immunological consequences of Ft LVS infection on the innate immune response, the inflammatory responses of mice infected i.p. or intradermally were compared. Mice infected i.p. displayed greater bacterial burden and increased expression of proinflammatory genes, particularly in the liver. In contrast to most LPS, highly purified Ft LVS LPS (10 μg/ml) was found to be only minimally stimulatory in primary murine macrophages and in HEK293T cells transiently transfected with TLR4/MD-2/CD14, whereas live Ft LVS bacteria were highly stimulatory for macrophages and TLR2-expressing HEK293T cells. Despite the poor stimulatory activity of Ft LVS LPS in vitro, administration of 100 ng of Ft LVS LPS 2 days before Ft LVS challenge severely limited both bacterial burden and cytokine mRNA and protein expression in the absence of detectable Ab at the time of bacterial challenge, yet these mice developed a robust IgM Ab response within 2 days of infection and survived. These data suggest that prior administration of Ft LVS LPS protects the host by diminishing bacterial burden and blunting an otherwise overwhelming inflammatory response, while priming the adaptive immune response for development of a strong Ab response.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge

Leah E. Cole; Yang Yang; Karen L. Elkins; Ellen T. Fernandez; Nilofer Qureshi; Mark J Shlomchik; Leonard A. Herzenberg; Leonore A. Herzenberg; Stefanie N. Vogel

Francisella tularensis (Ft), a Gram-negative intracellular bacterium, is the etiologic agent of tularemia. Infection of mice with <10 Ft Live Vaccine Strain (Ft LVS) organisms i.p. causes a lethal infection that resembles human tularemia. Here, we show that immunization with as little as 0.1 ng Ft LVS lipopolysaccharide (Ft-LPS), but not Ft lipid A, generates a rapid antibody response that protects wild-type (WT) mice against lethal Ft LVS challenge. Protection is not induced in Ft-LPS-immunized B cell-deficient mice (μMT or JhD), male xid mice, or Ig transgenic mice that produce a single IgH (not reactive with Ft-LPS). Focusing on the cellular mechanisms that underlie this protective response, we show that Ft-LPS specifically stimulates proliferation of B-1a lymphocytes that bind fluorochrome-labeled Ft-LPS and the differentiation of these cells to plasma cells that secrete antibodies specific for Ft-LPS. This exclusively B-1a antibody response is equivalent in WT, T-deficient (TCRαβ−/−, TCRγδ−/−), and Toll-like receptor 4 (TLR4)-deficient (TLR4−/−) mice and thus is not dependent on T cells or typical inflammatory processes. Serum antibody levels peak ≈5 days after Ft-LPS immunization and persist at low levels for months. Thus, immunization with Ft-LPS activates a rare population of antigen-specific B-1a cells to produce a persistent T-independent antibody response that provides long-term protection against lethal Ft LVS infection. These data support the possibility of creating effective, minimally invasive vaccines that can provide effective protection against pathogen invasion.


Journal of Immunology | 2008

Macrophage Proinflammatory Response to Francisella tularensis Live Vaccine Strain Requires Coordination of Multiple Signaling Pathways

Leah E. Cole; Araceli E. Santiago; Eileen M. Barry; Tae Jin Kang; Kari Ann Shirey; Zachary J. Roberts; Karen L. Elkins; Alan S. Cross; Stefanie N. Vogel

The macrophage proinflammatory response to Francisella tularensis (Ft) live vaccine strain (LVS) was shown previously to be TLR2 dependent. The observation that intracellular Ft LVS colocalizes with TLR2 and MyD88 inside macrophages suggested that Ft LVS might signal from within the phagosome. Macrophages infected with LVSΔiglC, a Ft LVS mutant that fails to escape from the phagosome, displayed greatly increased expression of a subset of TLR2-dependent, proinflammatory genes (e.g., Tnf) but decreased expression of others (e.g., Ifnb1). This latter subset was similarly mitigated in IFN-β−/− macrophages indicating that while Ft LVS-induced TLR2 signaling is necessary, cytosolic sensing of Ft to induce IFN-β is required for full induction of the macrophage proinflammatory response. Although LVSΔiglC greatly increased IL-1β mRNA in wild-type macrophages, protein secretion was not observed. IL-1β secretion was also diminished in Ft LVS-infected IFN-β−/− macrophages. rIFN-β failed to restore IL-1β secretion in LVSΔiglC-infected macrophages, suggesting that signals in addition to IFN-β are required for assembly of the inflammasome and activation of caspase-1. IFN-β plays a central role in controlling the macrophage bacterial burden: bacterial recovery was greater in IFN-β−/− than in wild-type macrophages and treatment of Ft LVS-infected macrophages with rIFN-β or 5,6-dimethylxanthenone-4-acetic acid, a potent IFN-β inducer, greatly decreased the intracellular Ft LVS burden. In toto, these observations support the hypothesis that the host inflammatory response to Ft LVS is complex and requires engagement of multiple signaling pathways downstream of TLR2 including production of IFN-β via an unknown cytosolic sensor and activation of the inflammasome.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Antigen-specific memory in B-1a and its relationship to natural immunity

Yang Yang; Eliver Eid Bou Ghosn; Leah E. Cole; Tetyana V. Obukhanych; Patricia Sadate-Ngatchou; Stefanie N. Vogel; Leonard A. Herzenberg; Leonore A. Herzenberg

In the companion article by Yang and colleagues [Yang Y, et al. (2012) Proc Natl Acad Sci USA, 109, 10.1073/pnas.1121631109], we have shown that priming with glycolipid (FtL) from Francisella tularensis live-vaccine strain (i) induces FtL-specific B-1a to produce robust primary responses (IgM >>IgG); (ii) establishes persistent long-term production of serum IgM and IgG anti-FtL at natural antibody levels; and (iii) elicits FtL-specific B-1a memory cells that arise in spleen but rapidly migrate to the peritoneal cavity, where they persist indefinitely but divide only rarely. Here, we show that FtL rechallenge alone induces these PerC B-1a memory cells to divide extensively and to express a unique activation signature. However, FtL rechallenge in the context of a Toll-like receptor 4 agonist-stimulated inflammatory response readily induces these memory cells to migrate to spleen and initiate production of dominant IgM anti-FtL secondary responses. Thus, studies here reveal unique mechanisms that govern B-1a memory development and expression, and introduce B-1a memory as an active participant in immune defenses. In addition, at a practical level, these studies suggest previously unexplored vaccination strategies for pathogen-associated antigens that target the B-1a repertoire.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Antigen-specific antibody responses in B-1a and their relationship to natural immunity

Yang Yang; Eliver Eid Bou Ghosn; Leah E. Cole; Tetyana V. Obukhanych; Patricia Sadate-Ngatchou; Stefanie N. Vogel; Leonard A. Herzenberg; Leonore A. Herzenberg

B-1a cells are primarily thought of as natural antibody-producing cells. However, we now show that appropriate antigenic stimulation induces IgM and IgG B-1a antibody responses and long-lived T-independent antigen-specific B-1a memory that differs markedly from canonical B-2 humoral immunity. Thus, we show here that in the absence of inflammation, priming with glycolipid (FtL) from Francisella tularensis live vaccine strain induces splenic FtL-specific B-1a to mount dominant IgM and activation-induced cytidine deaminase-dependent IgG anti-FtL responses that occur within 3–5 d of FtL priming and fade within 1 wk to natural antibody levels that persist indefinitely in the absence of secondary FtL immunization. Equally surprising, FtL priming elicits long-term FtL-specific B-1a memory cells (IgM>>IgG) that migrate rapidly to the peritoneal cavity and persist there indefinitely, ready to respond to appropriately administrated secondary antigenic stimulation. Unlike B-2 responses, primary FtL-specific B-1a responses and establishment of persistent FtL-specific B-1a memory occur readily in the absence of adjuvants, IL-7, T cells, or germinal center support. However, in another marked departure from the mechanisms controlling B-2 memory responses, rechallenge with FtL in an inflammatory context is required to induce B-1a secondary antibody responses. These findings introduce previously unexplored vaccination strategies for pathogens that target the B-1a repertoire.


Journal of Leukocyte Biology | 2010

Phagosomal retention of Francisella tularensis results in TIRAP/Mal‐independent TLR2 signaling

Leah E. Cole; Michelle H. W. Laird; Anna M. Seekatz; Araceli E. Santiago; Zhaozhao Jiang; Eileen M. Barry; Kari Ann Shirey; Katherine A. Fitzgerald; Stefanie N. Vogel

TLR2 plays a central role in the activation of innate immunity in response to Ft, the causative agent of tularemia. We reported previously that Ft LVS elicited strong, dose‐dependent NF‐κB reporter activity in TLR2‐expressing human embryo kidney 293 T cells and that Ft LVS‐induced murine macrophage proinflammatory cytokine gene and protein expression is TLR2‐dependent. We demonstrated further that Ft can signal through TLR2 from within the phagosome and that phagosomal retention of Ft leads to greatly increased expression of a subset of proinflammatory genes. The two adaptor proteins associated with TLR2‐mediated signaling are MyD88 and TIRAP. Although MyD88 is absolutely required for the Ft‐induced macrophage cytokine response, the requirement for TIRAP can be overcome through retention of Ft within the phagosome. TIRAP‐independent signaling was observed whether Ft was retained in the phagosome as a result of bacterial mutation (LVSΔiglC) or BFA‐mediated inhibition of phagosome acidification. The requirement for TIRAP in TLR2 signaling could also be overcome by increasing the concentrations of synthetic bacterial TLR2 agonists. Taken together, these data suggest that prolonging or enhancing the interaction between TLR2 and its agonist overcomes the “bridging” function ascribed previously to TIRAP.


Vaccine | 2009

Characterization of rationally attenuated Francisella tularensis vaccine strains that harbor deletions in the guaA and guaB genes.

Araceli E. Santiago; Leah E. Cole; Augusto A. Franco; Stefanie N. Vogel; Myron M. Levine; Eileen M. Barry

Francisella tularensis, the etiologic agent of tularemia, can cause severe and fatal infection after inhalation of as few as 10 -- 100CFU. F. tularensis is a potential bioterrorism agent and, therefore, a priority for countermeasure development. Vaccination with the live vaccine strain (LVS), developed from a Type B strain, confers partial protection against aerosal exposure to the more virulent Type A strains and provides proof of principle that a live attenuated vaccine strain may be efficacious. However LVS suffers from several notable drawbacks that have prevented its licensure and widespread use. To address the specific deficiencies that render LVS a sub-optimal tularemia vaccine, we engineered F. tularensis LVS strains with targeted deletions in the guaA or guaB genes that encode critical enzymes in the guanine nucleotide biosynthetic pathway. F. tularensis LVSDeltaguaA and LVSDeltaguaB mutants were guanine auxotrophs and were highly attenuated in a mouse model of infection. While the mutants failed to replicate in macrophages, a robust proinflammatory cytokine response, equivalent to that of the parental LVS, was elicited. Mice vaccinated with a single dose of the F. tularensis LVSDeltaguaA or LVSDeltaguaB mutant were fully protected against subsequent lethal challenge with the LVS parental strain. These findings suggest the specific deletion of these target genes could generate a safe and efficacious live attenuated vaccine.


Human Vaccines | 2009

Vaccines against tularemia

Eileen M. Barry; Leah E. Cole; Araceli E. Santiago

Francisella tularensis is a Category A select agent for which vaccine and countermeasure development are a priority. In the past 8 years, renewed interest in this pathogen has led to the generation of an enormous amount of new data on both the pathogen itself and its interaction with host cells. This information has fostered the development of various vaccine candidates including acellular subunit, killed whole cell, and live attenuated. This review summarizes the progress and promise of these various candidates.

Collaboration


Dive into the Leah E. Cole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiping Qin

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Karen L. Elkins

Center for Biologics Evaluation and Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge